

Prize Winner

Scientific Inquiry

> Year 3-4

Cameron Pearce Tomi Morea

Grange Primary School

Which everyday objects have the most bacteria?

Cameron Pearce and Tomi Morea

QUESTIONING AND PREDICTING:

What is the question that you are investigating?
Bacteria are small organisms that are found in all natural environments. Most can only be seen with a microscope as they are only a single cell. More than 100 trillion bacterial organisms live inside our gut, both good and bad. The helpful bacteria breaks-down nutrients from food, medicine and protect against diseases. Bacteria that cause diseases can get into the human body through your nose, mouth, and cuts in your skin. Bacteria quickly reproduce and cause infection. We can spread the bad bacteria by touching infected surfaces, body fluids and faeces, spreading bacteria in the air by coughing or spitting.

We are interested to know which surfaces around our house and the kind of environment that bacteria like to grow best. Our question is "Which everyday objects have the most bacteria?"

What do you predict will happen?

We will test 8 different surfaces and our predictions from most to least bacteria are:

1. Toilet seat
2. Bathroom faucet/sink
3. ipad
4. Car Keys
5. Steering wheel
6. Nintendo Switch Remote
7. Door knob
8. Light switch

We predict the toilet seat will have the most bacteria because when we go to the toilet the bacteria from our bottom falls onto the seat. The light switch will have the least as we don't use it often.

Bacteria might grow best on surfaces that are damp. Surface that we touch or use a lot would probably have more bacteria from our hands and body fluids.

PLANNING AND CONDUCTING:

Explain why you chose the particular method for your investigation.
To investigate our question we need to make Agar plates which are used a lot in science labs. They contain Agar and nutrients which makes a solid surface for the bacteria to grow on. Most bacteria divide to form two separate cells. These divide again and billions of bacteria can form from a single bacteria in only 24 hours. When bacteria grow on the Agar they form colonies which we can count without a microscope.

Which variable will you change?
The variable that we will change is the object/surface being tested (see predictions).

Which variable will you measure?
The variable that we will be measuring is the number of bacteria colonies.

Is your investigation a 'fair test'?
The investigation is a fair test because only one independent variable (object/surface) is changed and all the controlled conditions (temperature, light, air conditions, plates, time they will grow) are kept the same. A control plate is used to show it is the surfaces causing bacteria to grow not the conditions.

Describe all the steps of your investigation so that someone else could do it again exactly as you did it.

Methods:

Wash your hands and any materials you'll be using to help prevent germs from contaminating your experiment.

How to prepare 9 Agar plates:

Need adult supervision/help!

1. Wash and dry the petri dishes. Cover them with lids.
2. Add 2 cups of water to a pot and bring it to boil on the stovetop.
3. Add 2 teaspoons each of beef stock, sugar and agar to the boiling water. Stir until dissolved.
4. Take the mixture off the heat and allow it to cool for a few minutes.
5. Remove the lids from the petri dishes and fill each dish halfway with the mixture. Replace the lids and leave space for moisture to escape as the mixture cools.
6. Refrigerate your covered petri dishes for at least four hours to allow the Agar to set and ready to use.

Collect bacteria samples:

1. Wipe the iPad screen with a damp, clean cotton swab.
2. Open one petri dish and lightly rub your sample across the agar in a zig zag pattern (use the same pattern for all tests). Dispose of the swab.
3. Replace the lid on the dish and tape it closed.
4. Label the dish with the date and sample. place it into a sealed plastic bag and set aside.
5. Clean the surface of the iPad.
6. Repeat steps 1-4 in your second Petri dish with a new surface and keep doing this for all dishes.
7. Set up a control plate where you do not wipe anything on the surface.

Incubate the bacteria colonies:

1. Place your petri dishes upside down inside a box and close the lid.
2. Place the box near a warm spot. We put the computer modem on top of the box.
3. Leave them to incubate for 3 days.
4. Remove the petri dishes from the box. Count the number of bacterial colonies growing on each plate and describe them using the charts for morphology of bacterial colonies.
5. To dispose put all bags with dishes in a biological waste bag.

EQUIPMENT AND MATERIALS:

List all the equipment and materials that you used in your investigation.

Materials:

- 9 Petri dishes
- 2 teaspoons beef stock powder
- 2 cups water
- 2 teaspoons sugar
- 2 teaspoons Agar powder
- Pot
- Spoon
- Stove
- $\quad 9$ sealable plastic bags
- Clear tape
- Permanent marker
- Cotton swabs
- Box
- Modem

List any possible risks that may result from the investigation and describe how they were controlled.

Biological Risk- We are working with bacteria and mould and could get infected or sick by the germs. We controlled this by not touching the bacteria, taping the lids on the plates, keeping them in bags only opened by adults, cleaning areas with antibacterial spray and disposed of the plates in biological waste bags.

Thermal Risk- We are working with a stove and risk getting burnt by the fire. We controlled this by not putting our face or hands close to the stove and an adult turned it on/off.

PROCESSING AND ANALYSING DATA AND INFORMATION:

3 days after we set up our plates we counted the bacteria colonies and wrote down what we could see using these charts.

Colony Morphology of Bacteria

MARGIN	COLOUR	ELEVATION	TEXTURE	SHAPE
Curled	Orange		Slimy, moist	Round
	Red or pink		Matte, brittle	Punctiform
 Filamentous	Black	$\underline{\text { Flat }}$	Shiny, viscous	Rhizoid (root-like)
 Undulate (wavy)	Brown	Convex	Dry, mucoid	
	Opaque or white	Pulvinate (Cushionshaped)	Translucent	Irregular
	Milky	Growth into culture medium	Iridescent (changes colour in reflected light)	

Characteristics of bacterial colony MORPHOLOGY

Control plate- shows no bacteria so the conditions such as air and agar dish did not cause bacteria to grow.

Bacteria growing on Agar plates 3 days after wiping the surfaces

Bacteria growing on our Agar plates 3 days after wiping the surfaces

Surface	Approximate number of bacteria colonies	Size	Shape	Margin	Colour	Elevation	Texture
Bathroom faucet	Confluent (all grown together)	Dish Mostly covered	Irregular	Entire	Opaque	Raised	Shiny, viscous
Toilet Seat	Hundreds many many hundreds	Punctiform and small	Circular	Entire	White and opaque	Convex	Shiny, viscous
Car keys	91	Moderate	Circular	Entire	Opaque	Pulvinate	Translucent Shiny, Viscous
Steering Wheel	120	Punctiform and Small	Circular	Entire	Milky	Convex	Shiny, viscous
Light switch	11	Punctiform x5 Small x 3 Large x3	Fungus x 1 Circular	Entire	Milky, white	Pulvinate	Shiny, viscous
Ipad	9	Punctiform $\times 6$ Small $\times 2$ Large $\times 1$	Fungus x 1 Circular	Entire	Opaque, white	Pulvinate	Shiny, viscous
Nintendo Switch Game Control	4	Punctiform	Circular	Entire	Opaque, white	Flat	Matte
Door knob	1	Punctiform	Circular	Entire	white	flat	Matte

Our table shows many different sizes and numbers of bacteria colonies growing on each of the surfaces.

Our conclusion from our results is that these surfaces have the most to least bacteria:

1. Bathroom faucet and sink- Had the most because the plate was covered all over with confluent bacteria.
2. Toilet seat- Hundreds of punctiform and small circular bacterial colonies.
3. Car keys- 91 moderate circular bacteria colonies.
4. Steering wheel-120 punctiform and small circular bacterial colonies. More colonies than the keys but were a lot smaller so we thought the keys had more overall bacteria.
5. Light switch-11 bacterial colonies (5 punctiform, 3 small, 3 large circular). Also has 1 fungus.
6. iPad -9 colonies (6 punctiform, 2 small, 1 large circular). It has 1 fungus.
7. Nintendo control-Only 4 punctiform circular bacteria colonies.
8. Door-knob-Only 1 punctiform circular colony.

We thought that the toilet seat would have the most bacteria but our results didn't show this. The bathroom faucet/sink had more bacteria that the toilet seat which is similar to a study we found that took samples from surfaces in a public toilet. The sink was top of their list with more than 100 colony forming units. The bathroom faucet/sink has the most bacteria because it has all our spit from when we brush our teeth, and bacteria from when we wash our hands.

We noticed that the top two surfaces with bacteria are used a lot and are in a moist environment which bacteria like to grow in.

We thought the iPad would have more bacteria, because Cameron uses it a lot but maybe he just cleaned it. The door knob may have been cleaned too as it had the least bacteria.

EVALUATING:

How could your investigation be improved?
We could improve our experiment by using a microscope to have more clear results of numbers. But we would need an expert.

How could your findings be useful to others?
This information helps us understand which objects grow the most bacteria and which need to be cleaned more often so that we don't get germs and get sick when we touch them.

What other related questions could be further investigated?
What are the different kinds of bacteria and fungus that grow on each of these different surfaces? It would be good to learn their proper names.

REFERENCES:

https://kids.kiddle.co/Agar plate
https://www.mi-sci.org/learn/families/athomescience/
https://kids.britannica.com/kids/article/bacteria/352814
https://www/germinator.com/blog/how-do-germs-spread-on-surface/
https://www/studocu.com/en-ca/document/university-of-toronto/biology/2022-lab-2-microbes-i-worksheet-1/29277689
https://www.infectioncontroltoday.com/view/study-shows-bathroom-sink-more-contaminated-toilet

Word count: 1096

Whack Everyday Objects Have The Most Bacteria? What are we planning to do?
We are planning to dab cotton buds on eight different everyday Surfaces, then to wife the bacteria from the cotton buds on agar plates. When done we will put the aga plates into an incubator, then to see which swiface has the most bacteria. in C
Surfaces we will be testing.......
Toilet Seat

- door knob

I pad

- bathroom faucet+Sink
- Steering wheel
- light snitch
- Switch remote
- Cor keys

We are interested to know Which swracees and the kind of environment that bacteria like to grow on bes'..
They might like to grow best on surfaces that are damp and the surfaces that we usually touch of use a bot Would probialaly have more bacteria from out hands and body. fluids. This would help us understand. Which surfaces probably meed to be cleaned most often so that we don't get germs and get sick when we touch them.
$S_{\text {urface }} V_{\text {arable- }}{ }^{3}$ This is what we will ${ }^{4}$ be ${ }^{6}$ chrnsuing.
We think the keys for my dads cow-
will have a decent amount of bacteria.
1 think it will have a decent amount - bacteria because every time you dive the cat you touch the car keys.
we know
Nintendo suint suited that Cameron g plays Nintendo suited a lat and never washes his hands before playing.
And also when ever he plays just dance ow sweat goes into the remote:

Cameroons dad lat has a los of bacteria because every time he drives e the cay he touches the stewing wheel, and he problaly doesn't trash his

We the derippitly think that the tided seat has the moist, bacteria because/ every time we hove to go fo the tided We sit down, or stand up and all the bacteria. feats our bum falls doing into the toilet seats.

We think the toilet Will have a lat of bacteria because it is being used all the time to wash peoples hands, and where we spit our spit.
That's why. We think the toilet of faucet will lot's of bacteria.

The door handle will have a quite normal amount of bacteria because this is the door to the Kitchen, and we have to clean out ,hand before gonovitg into the kitchen.

The light switch would have a bit of bacteria because You e don't normally turn the tight offer and on murat mermaids worn the light Loesn't otssually get tuned on much $=$

The ipad would hove a cot of for school and for gaming.

What We Think
most bacterin fran most ta least.
2. bathroom faucet $+\operatorname{sink}$
$3+1$ pad
4. keys
5. Steeling wheel
6. "nintendo is witch remote
8. Wight switch least

The dypprdat H et 7 triable That we will be measwing is bacterial
growth.
In order to test our question be need to try and make some agat dishes to grow the bacteria on.

Agar plates are a Petri dish that contains agar and some nutrients for the bactina to grow bacteria When bacteria grow on the agar plate they form colonise. Each colony has similar genetic characteriotus,

The investigation is a fair test, as ob one variable (the independent variable. the different surfaces tested) is changed and all other conditions controlled variables ape temperature, light, air conditions began plates, time they will be grown,
are kept the same are kept the same,
The dependent variaffe measured on observed is bacterial
(4) not have anything! Wiped onto it a control plate that did
(4) not have anything Wiped onto it so that we knew that grow, not the surredice

Materials.
From hitps:/lwww.mi-sci.org/learn I families/gthomesclence
Petrie dishes or semal ogrelyment cups with lids.
1 teaspoon of beef stack powder or beep bullion.
.1 cup of water.
.1 teaspoon of sugar.
. 1 teaspoon of agar parrober of gelation.

- Spoon
- twee s sealable plastic kagsclear tape for each dish..
- permanent mopper or felt-tip pen.
. 2 cotton swabs per dish.
- medicym sized (gandboand bari.
- Pot her σ res

How to prepare an agar plate.
F Note: Sanitation is very, important, in this experiment! Though
\Rightarrow you won't reach completely sterile conditions while expert inventions
at home: it's important to mash your hands, the counter apt any materials yowl be using thyogghly. This will holp prevent germs fro

1. After Washing and drying "1. the petridishes of condimat cups, Cover them with the lids.
2. With the held of your adult, add the cup of water to a pos. and bring it to a boil on the Stovetap.
3. Add the beef stock popider, sugar, and gelatine to the boiling

Water. Skit until dissolved'.
4. Take the mixture off the heat and allow it to cool for ten minutes.
5. Remove the lid from the petty dish, and with the help of your adult, feel each petri dish half-way with the mixture. Quickly
Set the lid atop each petti dish, leaving for moisture to escape as the mixture cools.
6. Refrigerate the covered dishes for at least fou Low ns, to allow the agar to jet.
\because Keep plates refrigerated till ready to use.

Sating up some test plates to see ip we ${ }^{5} 16 \mathbf{n}^{12}$ grommet

- We followed the method to to prepare save age plates.
 the pear pourrm, the solution in the patio dish ers But a fou minutes before pouring.
We poured 3 plates and put it in the fridge
oreveright.
We typed his on a computer \downarrow

What is Bacteria?
Bacteria are small organisms, or living things, that are found in all natural environments, for example, soil, water, plants, animals, radioactive waste. Most can only be seen with a microscope as they are made of a single cell.

Bacteria do not have most of the structures found in the cells of other organisms. They are much simpler and smaller than all other cells of living things.

Bacteria take in food and get rid of waste through their cell walls. Most bacteria reproduce by dividing down the middle to form two separate cells. These cells then each divide again to form into four cells. Through this process, billions of bacteria may form from a single bacterium in only 24 hours.

Right now, there are more than 100 trillion bacterial microorganisms in your body, both good and bad, that are living inside the gut of our stomach. The helpful bacteria helps break down nutrients from food, break down medicine and protect against diseases. But when the body gets too much bacteria in our gut, they need to fight them off to keep healthy.

Bacteria that cause diseases can get into the human body through the nose, the mouth, and cuts in the skin. Bacteria quickly reproduce and cause infection. We can spread the bad bacteria by touching infected surfaces or foods, bodily fluids, spreading bacteria in the air by coughing or spitting and contact with faeces.
collect bacteria samples.
-1, Wipe the screen of the ipad with a clean cotton swale.

- -Z: Open the petri dish, and lightly, rub your sample across the agar in zig zarg patterns. Ilispose of the elton swab after use.
:3, Replace the Lid on the petri dish, and tope it closed. 4. Use a marker to label the dish with the date and the date and the name pe the sample. Place the plate in a sealed plastic bag and set aside.
5, clean the surface of the ipad, and use w news, clean cotton swab to wipe the surface again.
6, Repeat stems 1.4 in your sthind second petri dish. with bathroom sink and toilet.
Incubate the bacteria colonies:

1. Place you petsi dishes upside down inside a box and close the lid.
2. Set up you incubator by placing the bot neat a warm

Spot, We put it under a Modem, under the computer desk.

1. leave the plate to incubate for $2-5$. lays.

ζ
letting up agar dishes (real experiment) 9,13
We prepared nine agar plates as writtion on page (5)
We reeded to do it two times to make enough agar. So used

- 2. cups of water, 2 teaspoons of sugar and 2 teaspoons of

We kept these in the fridge until (9)

Clacking The Practice fishes $9,6: 23$

The Toilet agar had chunks of solid agar whee poured. It needs to be liquid nest time

OBSERvation

- Ipad observation.
- it has a fungus spat.
has multiput white bacteria.
bathroom sink
it is a colonised will graylblack clear bacteria.
-it also has one little black dot.

Toilet seat

- The toilet seat also hays fungus.
. it has plenty of white bacteria. And yellow.
- This evidence that we can qectually grow bacteria on our agar dishes, so weill go ahead with the real experiment.
a

Collecting bacteria Samples 1216123 .

- We collected bacteria samples from the eight surfaces. (as written on page 7) it
- We used the sane $z_{\text {in Fag pattern to mara }}$ sure pars sure it was controlled between A tests.

Characteristics of bacterial Colony MORPHOLOGY

Elevation Riot Raised Convex Pulvinate Umbonate

Size Punctiform small Moderate Large
Texture Smooth or rough ,dry, moist, mucoid, rugose (wrinkled).
Appearance Glistening (shiny) or dull
Pigmentation Nonpigmented (e.g., cream, tan, white) Pigmented (e.g., purple, red, yellow)

Optical property

Results
In order to describe the bacteria growing on each of the q. plates and we found some inpermoliten to hap us desarthe the morppologigy of the batereate colons. We cont count each baddie, as we need a mivoscopee iso We are just counting bacteria Colonies.

Colony Morphology of Bacteria

hops: // Wal, studocu. com/en-ca/document/univeisity-of-
 toronto / biology/2022-Lob-2-micunobis - i-workshect - 1/ 24277689 .

Results lay J
3 days apter plating, oui antral is plate showed that it dium't hop eve any bacteria at all, thereserete any bacteria growing in the other
control
(14)

Results $\operatorname{lay}_{3} 3$
Bacteria Growing 3 Days After Plating.

Resuts day 3

Results day 3 $15 \cdot 6 \cdot 23$

Results/Condusion
Based on day thee lesults we observed many diffevent sies of bacterial colonies on the eight different platces as well as the amount growing. from each of the swfaces.
Based on out results:... from mos' to leass.bacterial colonis

1. Bathroom fauct - Bactetia green on mosi of the swiface tsink
2. Tailet seat
3. Lat keys \cdots Hand to tell apart as cat keys hod
4. Steeting Wheel
\{larget but less colories, but steeing wheel had mote but punctiform.
5. light switch.
6. 1 pad
7. game contral
8. doorknob

We thought that the toilet ssean yould have the most bacterin: growing in the plate. But the bathrooms forect had more a bacderia then the toilet seat.
We found a studge that faund a simillar results to what we had. Thay took multiple samples from ofjects and surfaces on a -public toilet and tested them for levels of bacteria, The top of the list was the sink wich showed more then 1,ano colany forming units (Lttpsi/l) WWW- infectioncontroditoday. compriew/stude-shour-bcthroem-sink-more-contaminated-toilt)
(20)

The bothom faucet' has the most bacteria because it has gal our spit, our pacteria when we wash our hands.
(from when weplerushour teeth)?

- the sink, has a lot of moisturelivich supports kaderial goth.
- We though that the ipad wale a lot more bacteria because
- Cameron plays a lot and uses it for school every day, but perhaps

Cameron wiped it not lang ago.

- We also thought the door knots and Nintentrol would also have a decent amount of bacteria transferred from ditty hands, but they had the least:

Cara Pera tides
Ne waited to observe the bacterial colonies aster 4 days of growth on the agar plates. Bast
The results from day 3 were pretty clear and on day 7, there was a lot of funnels I mould growing on the dishes, so was hard to orserve bacteria colonies.
So we added the photos just to show the gremith of the défferent types of bacteria and mould/fung).

Control

Day 7 Rosults

Fwothet questions that we can investigate...

- What are the different types of bacteria andifingis: growing on the plate.

OSA RISK ASSESSMENT FORM

for all entries in (\checkmark) \square Models \& Inventions and $\mathbb{\text { I Scientific Inquiry }}$

This must be included with your report, log book or entry. One form per entry.
STUDENTS) NAME:
 ID:0218-039 school: Grange Primary
Activity: Give a brief outline of what you are planning to do.
Activity: Give a brief outline of what you are planning to do.
We are planning to investigate light different Surfaces to see which has the most bacteria. We will be testing the bacteria on agar plates.

Are there possible risks? Consider the following:

- Chemical risks: Are you using chemicals? If so, check with your teacher that any chemicals to be used are on the approved list for schools. Check the safety requirements for their use, such as eye protection and eyewash facilities, availability of running water, use of gloves, a well-ventilated area or fume cupboard.
- Thermal risks: Are you heating things? Could you be burnt?
- Biological risks: Are you working with micro-organisms such as mould and bacteria?
- Sharps risks: Are you cutting things, and is there a risk of injury from sharp objects?
- Electrical risks: Are you using mains (240 volt) electricity? How will you make sure that this is safe? Could you use a battery instead?
- Radiation risks: Does your entry use potentially harmful radiation such as UV or lasers?
- Other hazards.

Also, if you are using other people as subjects in an investigation you must get them to sign a note consenting to be part of your experiment.

RISK ASSESSMENT COMPLETED BY (student names)): \qquad

SIGNATURES): \qquad trinoteas
[By ticking this box, I/we state that my/our project adheres to the listed criteria for this Category.

