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Introduction 

 

In early 2020, the world was shaken, as an unknown virus - COVID-19 - erupted across the globe. While 

arguably this pandemic is still ongoing, it’s safe to say that the majority of infected cases are in the past. 

But this raises the question – how exactly, do pandemics evolve over time?  

 

Aim and Scientific Purpose 

 

This project aims to educate people about some of the interesting maths and science behind the evolution 

of a pandemic; through an interactive simulation where users can see how a pandemic change over time, 

by changing the initial conditions. 

 

Potential Uses 

 

This simulation can be used in education institutions, as a teaching resource to show students the 

intricacies of how we predict pandemics, as well as to teach the broader topic of differential equations to 

students. 

 

Requirements to Run the Program 

 

Desmos online graphing calculator, the platform on which this program was built, is compatible with 

most online browsers, including the latest two versions of Chrome, Firefox, Safari, and Microsoft Edge. 

This is a free website which the public can easily access, hence why this platform was chosen. 

 

Instructions for Use 

 

1. Open https://www.desmos.com/calculator/siyxib0f5v. 

2. Set the initial conditions. 𝐼0 refers to the fraction of the population initially infected, 𝛽 refers to the 

probability of contracting the disease, and 𝛾 refers to the probability of recovering from the disease. By 

default, the graph will be set to 𝐼0 = 0.01, 𝛽 = 0.7 and 𝛾 = 0.1. This can be done using the sliders, as 

shown in Figure 01. 

 

 

 

 

https://www.desmos.com/calculator/siyxib0f5v


Figure 01: The sliders used to set the initial conditions. 

 

3. Watch the graph on the right change! 

The following steps are to access the other features in the graph: 

4. There are multiple features in the graph, which you can turn on and off to view different things. You 

can click on the triangular arrow icon near the folder symbols, to see the actual calculations and formulae 

which were used, as well as click on the actual folder icon, to graph what the folder includes. This is 

shown in Figure 02. 

Figure 02: How to access a folder. 

 

5. In this way, you can see the original points which were calculated for the number of people infected on 

each day, as well as an approximation for it. Similarly, for different purposes, a user can access an 

approximation for the integral of the function, and an approximation for the derivative of the function, 

which can be seen in Figure 03 and Figure 04. When accessing the derivative, the user can move the 

slider marked 𝑘 to visualise how the derivative changes. 

Figure 03: An approximation and graph of the integral of the function. 

 

Figure 04: An approximation and graph of the derivative of the function. 

 



7. The user can view the maximum of the function, (basically when the most people are infected) in the 

“Local Maxima” folder. This shows where the derivative of the function is 0. This usually also brings up 

other erroneous points due to the nature of the approximation, hence it is up to the human user to figure 

out which line corresponds to the highest point. For example, as can be seen in Figure 05, only the red 

line at the center of the image corresponds to the highest value of 𝐼(𝑡), whereas the line to the very right 

of the image is falsely showing. 

 

Figure 05: Showing erroneous solutions do the highest points on the graph. 

 

6. If there are any questions, there are instructions on the program itself for the user. Similarly, feel free to 

contact me on vinuka.kaluwila@pembroke.sa.edu.au. 

 

Full Code and Explanation 

 

What makes simulating pandemics interesting, is that they are governed by what’s known as “differential 

equations” rather than regular “equations.” The difference between these two terms, is that a differential 

equation tells us how a function of time changes rather than what it is – where 
𝑑

𝑑𝑡
 is the “derivative” or the 

rate of change of the function at any given point 𝑡. It is the same forms of equations which dictate many 

other things in the universe, such as the movement of planets, weather patterns, and fluid flow.  

The differential equations required to model the simplest form of a pandemic are: 

𝑑

𝑑𝑡
𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) 

𝑑

𝑑𝑡
𝐼(𝑡) = 𝛽𝑆(𝑡) − 𝛾𝐼(𝑡) 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 

In this system, 𝑡 refers to time, which is the variable graphed on the 𝑥-axis on the final project. 𝑆(𝑡), 𝐼(𝑡), 
and 𝑅(𝑡) are functions of time; of which 𝑆(𝑡) is the fraction of the population susceptible of getting the 

disease, 𝐼(𝑡) is the fraction of the population infected with the disease, and 𝑅(𝑡) are the fraction of the 

population recovered from the disease. Note that 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1. In the final project, 𝐼(𝑡) was 

what was graphed on the 𝑦-axis, as it is arguably the most important variable. 

The problem with differential equations, however, is that there are sometimes no analytic solutions to 

these equations. This means that they cannot be written in terms of finite, standard mathematical 
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operations. This is exactly the case with the pandemic equations – with there being no mathematical 

equation graphing 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡). 

This is why the initial part of the code is to create an approximation for these equations – which can be 

done using a method known as “Euler Integration.” While in the precise formula, 𝑑𝑡 refers to an 

infinitesimally small step in time, we can substitute another small value in for 𝑑𝑡. This gives a new 

formula, which is defined in terms of a recursive function rather than a differential equation: 

𝑆(𝑡 + 𝑑𝑡) = 𝑆(𝑡) − (𝛽𝑆(𝑡)𝐼(𝑡))𝑑𝑡 

𝐼(𝑡 + 𝑑𝑡) = 𝐼(𝑡) + (𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡))𝑑𝑡 
𝑅(𝑡 + 𝑑𝑡) = 𝑅(𝑡) + 𝛾𝐼(𝑡)𝑑𝑡 

As 𝑑𝑡 gets closer and closer to 0, the approximation becomes the true, continuous function. However, for 

the purpose of this project, a 𝑑𝑡 of 1 was chosen. This is a relatively large 𝑑𝑡, making this a limitation of 

the final product. However, this yields the following equations. (𝐼(𝑡) is not dependent on 𝑅(𝑡), this 

equation can be excluded). Hence, this yields the final recursive equations used to model the pandemic: 

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) 
𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) 

These equations were used to find the spread of the pandemic at integer values of 𝑡 (basically whole 

numbers of days), for 60 days. 

It is these equations which can be seen implemented in the following latex form code: 

S_{0}=1-I_{0} 

S_{1}=S_{0}-\left(\beta S_{0}I_{0}\right) 

I_{1}=I_{0}+\left(\beta S_{0}I_{0}-\gamma I_{0}\right) 

S_{2}=S_{1}-\left(\beta S_{1}I_{1}\right) 

I_{2}=I_{1}+\left(\beta S_{1}I_{1}-\gamma I_{1}\right) 

S_{3}=S_{2}-\left(\beta S_{2}I_{2}\right) 

I_{3}=I_{2}+\left(\beta S_{2}I_{2}-\gamma I_{2}\right) 

S_{4}=S_{3}-\left(\beta S_{3}I_{3}\right) 

I_{4}=I_{3}+\left(\beta S_{3}I_{3}-\gamma I_{3}\right) 

S_{5}=S_{4}-\left(\beta S_{4}I_{4}\right) 

I_{5}=I_{4}+\left(\beta S_{4}I_{4}-\gamma I_{4}\right) 

S_{6}=S_{5}-\left(\beta S_{5}I_{5}\right) 

I_{6}=I_{5}+\left(\beta S_{5}I_{5}-\gamma I_{5}\right) 

S_{7}=S_{6}-\left(\beta S_{6}I_{6}\right) 

I_{7}=I_{6}+\left(\beta S_{6}I_{6}-\gamma I_{6}\right) 

S_{8}=S_{7}-\left(\beta S_{7}I_{7}\right) 

I_{8}=I_{7}+\left(\beta S_{7}I_{7}-\gamma I_{7}\right) 

S_{9}=S_{8}-\left(\beta S_{8}I_{8}\right) 

I_{9}=I_{8}+\left(\beta S_{8}I_{8}-\gamma I_{8}\right) 

S_{10}=S_{9}-\left(\beta S_{9}I_{9}\right) 

I_{10}=I_{9}+\left(\beta S_{9}I_{9}-\gamma I_{9}\right) 

S_{11}=S_{10}-\left(\beta S_{10}I_{10}\right) 

I_{11}=I_{10}+\left(\beta S_{10}I_{10}-\gamma I_{10}\right) 

S_{12}=S_{11}-\left(\beta S_{11}I_{11}\right) 



I_{12}=I_{11}+\left(\beta S_{11}I_{11}-\gamma I_{11}\right) 

S_{13}=S_{12}-\left(\beta S_{12}I_{12}\right) 

I_{13}=I_{12}+\left(\beta S_{12}I_{12}-\gamma I_{12}\right) 

S_{14}=S_{13}-\left(\beta S_{13}I_{13}\right) 

I_{14}=I_{13}+\left(\beta S_{13}I_{13}-\gamma I_{13}\right) 

S_{15}=S_{14}-\left(\beta S_{14}I_{14}\right) 

I_{15}=I_{14}+\left(\beta S_{14}I_{14}-\gamma I_{14}\right) 

S_{16}=S_{15}-\left(\beta S_{15}I_{15}\right) 

I_{16}=I_{15}+\left(\beta S_{15}I_{15}-\gamma I_{15}\right) 

S_{17}=S_{16}-\left(\beta S_{16}I_{16}\right) 

I_{17}=I_{16}+\left(\beta S_{16}I_{16}-\gamma I_{16}\right) 

S_{18}=S_{17}-\left(\beta S_{17}I_{17}\right) 

I_{18}=I_{17}+\left(\beta S_{17}I_{17}-\gamma I_{17}\right) 

S_{19}=S_{18}-\left(\beta S_{18}I_{18}\right) 

I_{19}=I_{18}+\left(\beta S_{18}I_{18}-\gamma I_{18}\right) 

S_{20}=S_{19}-\left(\beta S_{19}I_{19}\right) 

I_{20}=I_{19}+\left(\beta S_{19}I_{19}-\gamma I_{19}\right) 

S_{21}=S_{20}-\left(\beta S_{20}I_{20}\right) 

I_{21}=I_{20}+\left(\beta S_{20}I_{20}-\gamma I_{20}\right) 

S_{22}=S_{21}-\left(\beta S_{21}I_{21}\right) 

I_{22}=I_{21}+\left(\beta S_{21}I_{21}-\gamma I_{21}\right) 

S_{23}=S_{22}-\left(\beta S_{22}I_{22}\right) 

I_{23}=I_{22}+\left(\beta S_{22}I_{22}-\gamma I_{22}\right) 

S_{24}=S_{23}-\left(\beta S_{23}I_{23}\right) 

I_{24}=I_{23}+\left(\beta S_{23}I_{23}-\gamma I_{23}\right) 

S_{25}=S_{24}-\left(\beta S_{24}I_{24}\right) 

I_{25}=I_{24}+\left(\beta S_{24}I_{24}-\gamma I_{24}\right) 

S_{26}=S_{25}-\left(\beta S_{25}I_{25}\right) 

I_{26}=I_{25}+\left(\beta S_{25}I_{25}-\gamma I_{25}\right) 

S_{27}=S_{26}-\left(\beta S_{26}I_{26}\right) 

I_{27}=I_{26}+\left(\beta S_{26}I_{26}-\gamma I_{26}\right) 

S_{28}=S_{27}-\left(\beta S_{27}I_{27}\right) 

I_{28}=I_{27}+\left(\beta S_{27}I_{27}-\gamma I_{27}\right) 

S_{29}=S_{28}-\left(\beta S_{28}I_{28}\right) 

I_{29}=I_{28}+\left(\beta S_{28}I_{28}-\gamma I_{28}\right) 

S_{30}=S_{29}-\left(\beta S_{29}I_{29}\right) 

I_{30}=I_{29}+\left(\beta S_{29}I_{29}-\gamma I_{29}\right) 

S_{31}=S_{30}-\left(\beta S_{30}I_{30}\right) 

I_{31}=I_{30}+\left(\beta S_{30}I_{30}-\gamma I_{30}\right) 

S_{32}=S_{31}-\left(\beta S_{31}I_{31}\right) 

I_{32}=I_{31}+\left(\beta S_{31}I_{31}-\gamma I_{31}\right) 

S_{33}=S_{32}-\left(\beta S_{32}I_{32}\right) 



I_{33}=I_{32}+\left(\beta S_{32}I_{32}-\gamma I_{32}\right) 

S_{34}=S_{33}-\left(\beta S_{33}I_{33}\right) 

I_{34}=I_{33}+\left(\beta S_{33}I_{33}-\gamma I_{33}\right) 

S_{35}=S_{34}-\left(\beta S_{34}I_{34}\right) 

I_{35}=I_{34}+\left(\beta S_{34}I_{34}-\gamma I_{34}\right) 

S_{36}=S_{35}-\left(\beta S_{35}I_{35}\right) 

I_{36}=I_{35}+\left(\beta S_{35}I_{35}-\gamma I_{35}\right) 

S_{37}=S_{36}-\left(\beta S_{36}I_{36}\right) 

I_{37}=I_{36}+\left(\beta S_{36}I_{36}-\gamma I_{36}\right) 

S_{38}=S_{37}-\left(\beta S_{37}I_{37}\right) 

I_{38}=I_{37}+\left(\beta S_{37}I_{37}-\gamma I_{37}\right) 

S_{39}=S_{38}-\left(\beta S_{38}I_{38}\right) 

I_{39}=I_{38}+\left(\beta S_{38}I_{38}-\gamma I_{38}\right) 

S_{40}=S_{39}-\left(\beta S_{39}I_{39}\right) 

I_{40}=I_{39}+\left(\beta S_{39}I_{39}-\gamma I_{39}\right) 

S_{41}=S_{40}-\left(\beta S_{40}I_{40}\right) 

I_{41}=I_{40}+\left(\beta S_{40}I_{40}-\gamma I_{40}\right) 

S_{42}=S_{41}-\left(\beta S_{41}I_{41}\right) 

I_{42}=I_{41}+\left(\beta S_{41}I_{41}-\gamma I_{41}\right) 

S_{43}=S_{42}-\left(\beta S_{42}I_{42}\right) 

I_{43}=I_{42}+\left(\beta S_{42}I_{42}-\gamma I_{42}\right) 

S_{44}=S_{43}-\left(\beta S_{43}I_{43}\right) 

I_{44}=I_{43}+\left(\beta S_{43}I_{43}-\gamma I_{43}\right) 

S_{45}=S_{44}-\left(\beta S_{44}I_{44}\right) 

I_{45}=I_{44}+\left(\beta S_{44}I_{44}-\gamma I_{44}\right) 

S_{46}=S_{45}-\left(\beta S_{45}I_{45}\right) 

I_{46}=I_{45}+\left(\beta S_{45}I_{45}-\gamma I_{45}\right) 

S_{47}=S_{46}-\left(\beta S_{46}I_{46}\right) 

I_{47}=I_{46}+\left(\beta S_{46}I_{46}-\gamma I_{46}\right) 

S_{48}=S_{47}-\left(\beta S_{47}I_{47}\right) 

I_{48}=I_{47}+\left(\beta S_{47}I_{47}-\gamma I_{47}\right) 

S_{49}=S_{48}-\left(\beta S_{48}I_{48}\right) 

I_{49}=I_{48}+\left(\beta S_{48}I_{48}-\gamma I_{48}\right) 

S_{50}=S_{49}-\left(\beta S_{49}I_{49}\right) 

I_{50}=I_{49}+\left(\beta S_{49}I_{49}-\gamma I_{49}\right) 

S_{51}=S_{50}-\left(\beta S_{50}I_{50}\right) 

I_{51}=I_{50}+\left(\beta S_{50}I_{50}-\gamma I_{50}\right) 

S_{52}=S_{51}-\left(\beta S_{51}I_{51}\right) 

I_{52}=I_{51}+\left(\beta S_{51}I_{51}-\gamma I_{51}\right) 

S_{53}=S_{52}-\left(\beta S_{52}I_{52}\right) 

I_{53}=I_{52}+\left(\beta S_{52}I_{52}-\gamma I_{52}\right) 

S_{54}=S_{53}-\left(\beta S_{53}I_{53}\right) 



I_{54}=I_{53}+\left(\beta S_{53}I_{53}-\gamma I_{53}\right) 

S_{55}=S_{54}-\left(\beta S_{54}I_{54}\right) 

I_{55}=I_{54}+\left(\beta S_{54}I_{54}-\gamma I_{54}\right) 

S_{56}=S_{55}-\left(\beta S_{55}I_{55}\right) 

I_{56}=I_{55}+\left(\beta S_{55}I_{55}-\gamma I_{55}\right) 

S_{57}=S_{56}-\left(\beta S_{56}I_{56}\right) 

I_{57}=I_{56}+\left(\beta S_{56}I_{56}-\gamma I_{56}\right) 

S_{58}=S_{57}-\left(\beta S_{57}I_{57}\right) 

I_{58}=I_{57}+\left(\beta S_{57}I_{57}-\gamma I_{57}\right) 

S_{59}=S_{58}-\left(\beta S_{58}I_{58}\right) 

I_{59}=I_{58}+\left(\beta S_{58}I_{58}-\gamma I_{58}\right) 

S_{60}=S_{59}-\left(\beta S_{59}I_{59}\right) 

I_{60}=I_{59}+\left(\beta S_{59}I_{59}-\gamma I_{59}\right) 

 

These points, for 𝐼(𝑡) were then graphed, in the following table, which can also be seen in the final 

Desmos link: 

T I 

0 I_{0} 

1 I_{1} 

2 I_{2} 

3 I_{3} 

4 I_{4} 

5 I_{5} 

6 I_{6} 

7 I_{7} 

8 I_{8} 

9 I_{9} 

10 I_{10} 

11 I_{11} 

12 I_{12} 

13 I_{13} 

14 I_{14} 

15 I_{15} 

16 I_{16} 

17 I_{17} 

18 I_{18} 

19 I_{19} 

20 I_{20} 

21 I_{21} 

22 I_{22} 

23 I_{23} 

24 I_{24} 

25 I_{25} 

26 I_{26} 

27 I_{27} 

28 I_{28} 

29 I_{29} 

30 I_{30} 

31 I_{31} 

32 I_{32} 

33 I_{33} 

34 I_{34} 

35 I_{35} 

36 I_{36} 

37 I_{37} 

38 I_{38} 

39 I_{39} 

40 I_{40} 

41 I_{41} 

42 I_{42} 

43 I_{43} 

44 I_{44} 

45 I_{45} 

46 I_{46} 

47 I_{47} 

48 I_{48} 

49 I_{49} 

50 I_{50} 

51 I_{51} 



52 I_{52} 

53 I_{53} 

54 I_{54} 

55 I_{55} 

56 I_{56} 

57 I_{57} 

58 I_{58} 

59 I_{59} 

60 I_{60} 

 

The next step in the approximation, was to “fill in” the spaces between the points – and to approximate 

the spread of the pandemic at non-integer values of 𝑡. To do this, a process known as a “Fourier Series” 

can be used. This would approximate the function as a sum of sine waves, giving a purely sinusoidal 

approximation for 𝐼(𝑡). 

The formula for a Fourier series for 𝐼(𝑡) on the interval 0 to 2𝑙 is: 

𝐼(𝑡) =
𝑎0
2
+ ∑(𝑎𝑛 cos (

𝑛𝜋𝑡

𝑙
) + 𝑏𝑛 sin (

𝑛𝜋𝑡

𝑙
))

∞

𝑛=1

 

Where: 

𝑎0 =
1

𝑙
∫ 𝐼(𝑡)𝑑𝑡

2𝑙

0

 

𝑎𝑛 =
1

𝑙
∫ 𝐼(𝑡) cos (

𝑛𝜋𝑡

𝑙
) 𝑑𝑡

2𝑙

0

 

𝑏𝑛 =
1

𝑙
∫ 𝐼(𝑡) sin (

𝑛𝜋𝑡

𝑙
) 𝑑𝑡

2𝑙

0

 

Note that this formula includes taking the integral of the function, which cannot be done, as 𝐼(𝑡) is not 

continuous! It is in this case, where the function’s integral can be approximated with a series of 

rectangles, which the viewer can view as shown in Figure 03. The code for the visual representation of 

these rectangles, in latex form, are: 

\operatorname{polygon}\left(\left(0,0\right),\left(0,I_{0}\right),\left(1,I_{0}\right),\left(1,0\right)\right) 

\operatorname{polygon}\left(\left(1,0\right),\left(1,I_{1}\right),\left(2,I_{1}\right),\left(2,0\right)\right) 

\operatorname{polygon}\left(\left(2,0\right),\left(2,I_{2}\right),\left(3,I_{2}\right),\left(3,0\right)\right) 

\operatorname{polygon}\left(\left(3,0\right),\left(3,I_{3}\right),\left(4,I_{3}\right),\left(4,0\right)\right) 

\operatorname{polygon}\left(\left(4,0\right),\left(4,I_{4}\right),\left(5,I_{4}\right),\left(5,0\right)\right) 

\operatorname{polygon}\left(\left(5,0\right),\left(5,I_{5}\right),\left(6,I_{5}\right),\left(6,0\right)\right) 

\operatorname{polygon}\left(\left(6,0\right),\left(6,I_{6}\right),\left(7,I_{6}\right),\left(7,0\right)\right) 

\operatorname{polygon}\left(\left(7,0\right),\left(7,I_{7}\right),\left(8,I_{7}\right),\left(8,0\right)\right) 

\operatorname{polygon}\left(\left(8,0\right),\left(8,I_{8}\right),\left(9,I_{8}\right),\left(9,0\right)\right) 

\operatorname{polygon}\left(\left(9,0\right),\left(9,I_{9}\right),\left(10,I_{9}\right),\left(10,0\right)\right) 

\operatorname{polygon}\left(\left(10,0\right),\left(10,I_{10}\right),\left(11,I_{10}\right),\left(11,0\right)\right) 

\operatorname{polygon}\left(\left(11,0\right),\left(11,I_{11}\right),\left(12,I_{11}\right),\left(12,0\right)\right) 

\operatorname{polygon}\left(\left(12,0\right),\left(12,I_{12}\right),\left(13,I_{12}\right),\left(13,0\right)\right) 

\operatorname{polygon}\left(\left(13,0\right),\left(13,I_{13}\right),\left(14,I_{13}\right),\left(14,0\right)\right) 

\operatorname{polygon}\left(\left(14,0\right),\left(14,I_{14}\right),\left(15,I_{14}\right),\left(15,0\right)\right) 



\operatorname{polygon}\left(\left(15,0\right),\left(15,I_{15}\right),\left(16,I_{15}\right),\left(16,0\right)\right) 

\operatorname{polygon}\left(\left(16,0\right),\left(16,I_{16}\right),\left(17,I_{16}\right),\left(17,0\right)\right) 

\operatorname{polygon}\left(\left(17,0\right),\left(17,I_{17}\right),\left(18,I_{17}\right),\left(18,0\right)\right) 

\operatorname{polygon}\left(\left(18,0\right),\left(18,I_{18}\right),\left(19,I_{18}\right),\left(19,0\right)\right) 

\operatorname{polygon}\left(\left(19,0\right),\left(19,I_{19}\right),\left(20,I_{19}\right),\left(20,0\right)\right) 

\operatorname{polygon}\left(\left(20,0\right),\left(20,I_{20}\right),\left(21,I_{20}\right),\left(21,0\right)\right) 

\operatorname{polygon}\left(\left(21,0\right),\left(21,I_{21}\right),\left(22,I_{21}\right),\left(22,0\right)\right) 

\operatorname{polygon}\left(\left(22,0\right),\left(22,I_{22}\right),\left(23,I_{22}\right),\left(23,0\right)\right) 

\operatorname{polygon}\left(\left(23,0\right),\left(23,I_{23}\right),\left(24,I_{23}\right),\left(24,0\right)\right) 

\operatorname{polygon}\left(\left(24,0\right),\left(24,I_{24}\right),\left(25,I_{24}\right),\left(25,0\right)\right) 

\operatorname{polygon}\left(\left(25,0\right),\left(25,I_{25}\right),\left(26,I_{25}\right),\left(26,0\right)\right) 

\operatorname{polygon}\left(\left(26,0\right),\left(26,I_{26}\right),\left(27,I_{26}\right),\left(27,0\right)\right) 

\operatorname{polygon}\left(\left(27,0\right),\left(27,I_{27}\right),\left(28,I_{27}\right),\left(28,0\right)\right) 

\operatorname{polygon}\left(\left(28,0\right),\left(28,I_{28}\right),\left(29,I_{28}\right),\left(29,0\right)\right) 

\operatorname{polygon}\left(\left(29,0\right),\left(29,I_{29}\right),\left(30,I_{29}\right),\left(30,0\right)\right) 

\operatorname{polygon}\left(\left(30,0\right),\left(30,I_{30}\right),\left(31,I_{30}\right),\left(31,0\right)\right) 

\operatorname{polygon}\left(\left(31,0\right),\left(31,I_{31}\right),\left(32,I_{31}\right),\left(32,0\right)\right) 

\operatorname{polygon}\left(\left(32,0\right),\left(32,I_{32}\right),\left(33,I_{32}\right),\left(33,0\right)\right) 

\operatorname{polygon}\left(\left(33,0\right),\left(33,I_{33}\right),\left(34,I_{33}\right),\left(34,0\right)\right) 

\operatorname{polygon}\left(\left(34,0\right),\left(34,I_{34}\right),\left(35,I_{34}\right),\left(35,0\right)\right) 

\operatorname{polygon}\left(\left(35,0\right),\left(35,I_{35}\right),\left(36,I_{35}\right),\left(36,0\right)\right) 

\operatorname{polygon}\left(\left(36,0\right),\left(36,I_{36}\right),\left(37,I_{36}\right),\left(37,0\right)\right) 

\operatorname{polygon}\left(\left(37,0\right),\left(37,I_{37}\right),\left(38,I_{37}\right),\left(38,0\right)\right) 

\operatorname{polygon}\left(\left(38,0\right),\left(38,I_{38}\right),\left(39,I_{38}\right),\left(39,0\right)\right) 

\operatorname{polygon}\left(\left(39,0\right),\left(39,I_{39}\right),\left(40,I_{39}\right),\left(40,0\right)\right) 

\operatorname{polygon}\left(\left(40,0\right),\left(40,I_{40}\right),\left(41,I_{40}\right),\left(41,0\right)\right) 

\operatorname{polygon}\left(\left(41,0\right),\left(41,I_{41}\right),\left(42,I_{41}\right),\left(42,0\right)\right) 

\operatorname{polygon}\left(\left(42,0\right),\left(42,I_{42}\right),\left(43,I_{42}\right),\left(43,0\right)\right) 

\operatorname{polygon}\left(\left(43,0\right),\left(43,I_{43}\right),\left(44,I_{43}\right),\left(44,0\right)\right) 

\operatorname{polygon}\left(\left(44,0\right),\left(44,I_{44}\right),\left(45,I_{44}\right),\left(45,0\right)\right) 

\operatorname{polygon}\left(\left(45,0\right),\left(45,I_{45}\right),\left(46,I_{45}\right),\left(46,0\right)\right) 

\operatorname{polygon}\left(\left(46,0\right),\left(46,I_{46}\right),\left(47,I_{46}\right),\left(47,0\right)\right) 

\operatorname{polygon}\left(\left(47,0\right),\left(47,I_{47}\right),\left(48,I_{47}\right),\left(48,0\right)\right) 

\operatorname{polygon}\left(\left(48,0\right),\left(48,I_{48}\right),\left(49,I_{48}\right),\left(49,0\right)\right) 

\operatorname{polygon}\left(\left(49,0\right),\left(49,I_{49}\right),\left(50,I_{49}\right),\left(50,0\right)\right) 

\operatorname{polygon}\left(\left(50,0\right),\left(50,I_{50}\right),\left(51,I_{50}\right),\left(51,0\right)\right) 

\operatorname{polygon}\left(\left(51,0\right),\left(51,I_{51}\right),\left(52,I_{51}\right),\left(52,0\right)\right) 

\operatorname{polygon}\left(\left(52,0\right),\left(52,I_{52}\right),\left(53,I_{52}\right),\left(53,0\right)\right) 

\operatorname{polygon}\left(\left(53,0\right),\left(53,I_{53}\right),\left(54,I_{53}\right),\left(54,0\right)\right) 

\operatorname{polygon}\left(\left(54,0\right),\left(54,I_{54}\right),\left(55,I_{54}\right),\left(55,0\right)\right) 

\operatorname{polygon}\left(\left(55,0\right),\left(55,I_{55}\right),\left(56,I_{55}\right),\left(56,0\right)\right) 

\operatorname{polygon}\left(\left(56,0\right),\left(56,I_{56}\right),\left(57,I_{56}\right),\left(57,0\right)\right) 

\operatorname{polygon}\left(\left(57,0\right),\left(57,I_{57}\right),\left(58,I_{57}\right),\left(58,0\right)\right) 

\operatorname{polygon}\left(\left(58,0\right),\left(58,I_{58}\right),\left(59,I_{58}\right),\left(59,0\right)\right) 



\operatorname{polygon}\left(\left(59,0\right),\left(59,I_{59}\right),\left(60,I_{59}\right),\left(60,0\right)\right) 

 

As more and more sinusoidal terms are added in the series, this approaches a perfect interpolation of the 

function. However, for the purpose of the program, only 20 different sine and cosine functions of 

different frequencies were added. This gives quite a good approximation of 𝐼(𝑡) for most initial 

conditions, however sometimes the sinusoidal nature of the approximation can be seen. This is further 

shown on the final product. The code in latex, for the final Fourier Series was is shown below. Note that 

this is written as a function of 𝑥, even though the variable initially assigned was 𝑡. This is because 

Desmos only supports functions of 𝑥: 

f\left(x\right)=\frac{a_{0}}{2}+a_{1}\cos\left(\frac{\pi x}{30}\right)+b_{1}\sin\left(\frac{\pi x}{30}\right)+a_{2}\cos\left(\frac{2\pi x}{30}\right)+b_{2}\sin\left(\frac{2\pi 

x}{30}\right)+a_{3}\cos\left(\frac{3\pi x}{30}\right)+b_{3}\sin\left(\frac{3\pi x}{30}\right)+a_{4}\cos\left(\frac{4\pi x}{30}\right)+b_{4}\sin\left(\frac{4\pi 

x}{30}\right)+a_{5}\cos\left(\frac{5\pi x}{30}\right)+b_{5}\sin\left(\frac{5\pi x}{30}\right)+a_{6}\cos\left(\frac{6\pi x}{30}\right)+b_{6}\sin\left(\frac{6\pi 

x}{30}\right)+a_{7}\cos\left(\frac{7\pi x}{30}\right)+b_{7}\sin\left(\frac{7\pi x}{30}\right)+a_{8}\cos\left(\frac{8\pi x}{30}\right)+b_{8}\sin\left(\frac{8\pi 

x}{30}\right)+a_{9}\cos\left(\frac{9\pi x}{30}\right)+b_{9}\sin\left(\frac{9\pi x}{30}\right)+a_{10}\cos\left(\frac{10\pi x}{30}\right)+b_{10}\sin\left(\frac{10\pi x}{30}\right)\left\{0\le 

x\le60\right\} 

a_{0}=\frac{1}{30}\operatorname{total}\left(I\right) 

a_{1}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{\pi T}{30}\right)\right) 

b_{1}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{\pi T}{30}\right)\right) 

a_{2}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{2\pi T}{30}\right)\right) 

b_{2}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{2\pi T}{30}\right)\right) 

a_{3}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{3\pi T}{30}\right)\right) 

b_{3}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{3\pi T}{30}\right)\right) 

a_{4}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{4\pi T}{30}\right)\right) 

b_{4}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{4\pi T}{30}\right)\right) 

a_{5}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{5\pi T}{30}\right)\right) 

b_{5}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{5\pi T}{30}\right)\right) 

a_{6}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{6\pi T}{30}\right)\right) 

b_{6}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{6\pi T}{30}\right)\right) 

a_{7}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{7\pi T}{30}\right)\right) 

b_{7}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{7\pi T}{30}\right)\right) 

a_{8}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{8\pi T}{30}\right)\right) 

b_{8}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{8\pi T}{30}\right)\right) 

a_{9}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{9\pi T}{30}\right)\right) 

b_{9}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{9\pi T}{30}\right)\right) 

a_{10}=\frac{1}{30}\operatorname{total}\left(I\cos\left(\frac{10\pi T}{30}\right)\right) 

b_{10}=\frac{1}{30}\operatorname{total}\left(I\sin\left(\frac{10\pi T}{30}\right)\right) 

 

Similarly, it is important to see the rate of change of the pandemic at any given moment. For this, the 

derivative of the Fourier series can be found, which approximates the derivative of 𝐼(𝑡). To implement 

this as can be seen in Figure 04, the following latex code can be used: 

k= 

g\left(x\right)=\frac{d}{dx}f\left(x\right)\left\{0\le x\le k\right\} 

g\left(k\right)\left(x-k\right)+f\left(k\right) 

x=k\left\{g\left(k\right)\le y\le f\left(k\right)\right\} 

 



In these equations, 𝑘 is some value of 𝑡, which the user can use the sliders to change – visualising the 

derivative of 𝐼(𝑡) at that point. 

Finally, the highest point of the original points can be written as: 

\max\left(I\right) 

 

And the places where the derivative of the Fourier series is equal to 0 is represented in the following code, 

which show the local maxima and minima: 

\frac{d}{dx}f\left(x\right)=0 
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