

Programming, Apps &

Robotics

Year 11-12

Stuart Vass

Pembroke School - Middle School

1

Oliphant Science Awards 2023
Entry 0486-014 Programming, Apps & Robotics

Stuart Vass, Year 12

Charmful
Charmful is an app where you wander an island, looking adventure, running with the wind, playing

with the trees.

The landscape and all graphics generate on the fly. From the movement of your character to the way

the trees sway in the wind, is simulated behaviour using scientific understanding of interactions.

Mathematical equations are used to create stacked 2D images (“sprite stacking”) that appear to look

and behave like moving 3-Dimensions.

This comprehensive yet simple program could be further extended and applied to an RPG/top-down

game. This creates a unique style that isn't used in many games, and because it's pseudo 3D, the rest

of the game can be coded as if it was a regular 2D RPG.

Instructions
You play as the main character wandering the island, running with the wind, playing with the trees. It

is a game developed for all ages, but particularly 8- to 12-year-olds.

Device: Any computer that can run .exe – typically Windows. Install like a regular program with

the .exe file. Link:

https://www.dropbox.com/s/gzrrdx2fyg1f7nw/Charmful%20V0.0.5.2.2%20OLIPHANT%20SCIENCE.ex

e?dl=0

Development

https://www.dropbox.com/s/gzrrdx2fyg1f7nw/Charmful%20V0.0.5.2.2%20OLIPHANT%20SCIENCE.exe?dl=0
https://www.dropbox.com/s/gzrrdx2fyg1f7nw/Charmful%20V0.0.5.2.2%20OLIPHANT%20SCIENCE.exe?dl=0

2

The game has been authored using Game Maker Studio 2. Using an education account, same as the

now free version, and can export as a .exe file.

It was designed to try to create self-generating 3D trees that move realistically in the wind.

It is my work, including most of the assets; some royalty-free assets are credited. Thank you to my

teachers and School for their support throughout my schooling.

Sprite stacking is a relatively straight forward way of creating depth. In Game Maker you can have a

sprite, which is a series of images where you draw them from bottom to top with a negative y offset

each time:

var length = sprite_get_number(sprite_index);
var interval = 10;
for (var i = 0; i < length; i++) {
 draw_sprite(sprite_index, i, x, y-i*interval);
}

But if multiple objects (such as pine trees) do this, although each individual tree has depth, it looks

like a bunch of flat images still.

Instead, what we can do is tell the program to draw every objects bottom layer first, then every

objects second layer next, instead of drawing one whole object before starting on the next.

var length = 200;
var interval = 1;
for (var i = 0; i < length; i++) {
 with(parent_sprite_stacking) {
 draw_sprite(sprite_index, i, x, y-i*interval);
 }
}

One of the best benefits of using sprite stacking though is that you can program a camera to move

in 3D space by just rotating the draw window around.

var length = 200;

3

var interval = 1;

var cam = view_camera[0];
var cam_a = camera_get_view_angle(cam);
var cam_i = lengthdir_x(1, 90-cam_a);
var cam_j = lengthdir_y(1, 90-cam_a);

for (var i = 0; i < length; i++) {
 with(parent_sprite_stacking) {
 draw_sprite(sprite_index, i, x-i*cam_i*interval, y-i*cam_j*interval);
 }
}

The notation cam_i and cam_j is used as what we’re creating is unit vectors upwards in relation to

the camera which in maths is referred to as 𝑖 and 𝑗. Already we’re putting into practice maths which

most people consider not useful in regular life!

Here is a video of the final program: https://www.youtube.com/watch?v=VucqDvPuJnY

Everything else in the program is built upon this bit of code – well, used to. As part my journey in

creating a sprite stacking program which was efficient enough to fit my purposes, I developed 6

different methods of drawing sprites to the screen. You can see these methods here:

https://www.youtube.com/watch?v=9JmyDRLT7ac

My final program actually uses the Green method opposed to the method (red) I’ve been describing.

https://www.youtube.com/watch?v=VucqDvPuJnY
https://www.youtube.com/watch?v=9JmyDRLT7ac

4

The efficiency of each method can be found in the table and graph:

Although the Orange Method was the most efficient, those efficiencies came with visual downsides,

so the Green Method was chosen.

Instead of opening every object and drawing the objects in layers from bottom to top, instead all

the objects add information to a very long list with details on how to draw the sprite and in what

order.

The list:

This list includes lists (and that list used to also include lists). Near the end of development, it turns

out embedded lists and lists saved to a temporary variable cause memory leaks. This is because

when a list embeds another list or when a list is saved to a variable the ID of that list is actually what

is being saved compared to the actual list. So, when the parent list or the variable is deleted it only

deletes the reference to the list, not the list itself, and when 120,000 lists are made in this way every

5

second problems start up fast. Thankfully this was resolved after 3 days of debugging trial and error

and searching the internet.

Another effect in the game is the blur. Photos of miniature things have a strong depth of field,

where the subject is in focus but almost immediately everything else is blurred. I wanted to recreate

this effect. I do this by first finding the sprites that are at the bottom and the top of the screen by

taking their (x,y,z) positions and rotating it through a rotation matrix to find what their (x,y,z)

positions are in relation to the camera.

[
𝑥
𝑦] [

cos(−𝑐𝑎𝑚𝐴) − sin(−𝑐𝑎𝑚𝐴)
sin(−𝑐𝑎𝑚𝐴) cos(−𝑐𝑎𝑚𝐴)

] = [
𝑥1

𝑦1
]

This is then mixed with a motion blur filter that blurs the border of the window outwards.

The more detailed objects were modelled in Blender 3.4 such as the house and the player then

converted to sliced images which I can then use in Game Maker using a website called Voxeliser.

In focus,

sharp.

Out of focus,

blurred.

6

The light on each object was determined by its distance to a light source and the time of day:

𝑙𝑖𝑔ℎ𝑡 =
20

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
+ 0.75 + 0.25 sin(𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑦)

var light = 20/light_distance+0.75+0.25*sin(global.time_of_day*2*pi/2400);

Mixing those things together along with a smoothed camera (using x = x ×0.9+new_x×0.1); self-

correcting terrain (by defining a rectangle and it smooths the corners); particles (by using drawing

images straight from a list); and water distortion (by offsetting every image by a sine function when

underwater). You get a program that is just made of 2D images but creates a 3D world.

It was all made by me over the course of about 50 hours over several months. There is about 2,000

lines of code.

Thank you to the Oliphant Science Award organisers, sponsors, judges for supporting students. As

well as my teachers and the school for the opportunity to learn and develop programming.

Bibliography
HeartBeast (16 September 2017) GameMaker Studio 2 - 3D Racecar - Sprite Stacking, YouTube,

accessed 2 April 2023. https://www.youtube.com/watch?v=sNgb3guusMA

Gizmo199 (23 November 2019) Fake 3d | Gamemaker Studio 2 | Depth issue solved, YouTube,

accessed 2 April 2023. https://www.youtube.com/watch?v=iLdGVN4h_tY

Gizmo199 X (5 September 2020) Sprite Stacking 3D | Smooth 360 camera & Basic setup | Game

Maker Studio 2.3 tutorial [EP 1], YouTube, accessed 2 April

2023. https://www.youtube.com/watch?v=VIDN-nG3EOU

Noonz (10 March 2021) 2d Sprite Stacking - Example/Tutorial, YouTube, accessed 2 April

2023. https://www.youtube.com/watch?v=1xFVVvoT6eg

7

Step Event for Objects to be drawn

8

The Draw Event which draws EVERTHING to the screen

9

10

11

12

13

