

Prize Winner

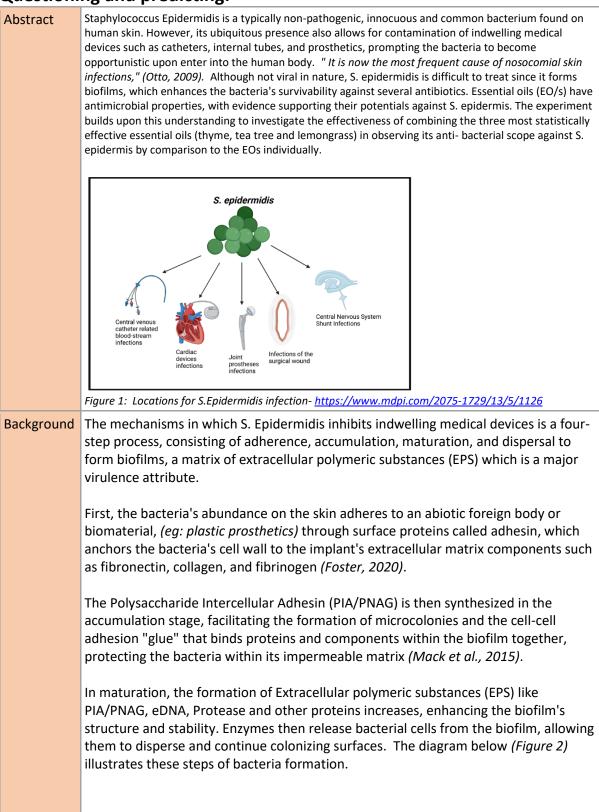
Scientific Inquiry

Year 9-10

Linh Bui Maiar Elkhouly

Adelaide Botanic High School

Department of Defence



Oliphant Science Awards – Scientific Investigation

The synergistic effect of combining essential oils to create an antimicrobial blend for treating skin infections

Linh Bui, Maiar Elkhouly

Questioning and predicting:

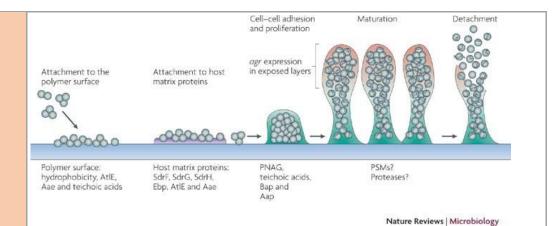


Figure 2 - A representation of the biofilm formation processhttps://www.nature.com/articles/nrmicro2182

S. Epidermidis causes virality issues when they enter the bloodstream or other sterile body systems, leading to various types of staph infection based on the interacted areas. The complex, impermeable matrix barrier also ensures that the bacteria has a slower metabolic rate, making antibiotics, phagocytosis and immune responses less susceptible. The bacteria's cementation onto the host's surface also allows for the infection to be sustainable, requiring persistent and prolonged treatments.

Thyme oil contains primarily thymol and carvacrol constituents, which are terpenes phenolic compounds known for their antimicrobial efficacy against S. Epidermidis, further inhibiting its biofilm formation. (*Walczac et al., 2021*). The carvacrol molecule interferes with the gene coding of quorum sensing, the communication system facilitating biofilm formation, allowing for disruption in the bacteria's colony ability to form and maintain biofilms for virulence (*Walczak et al., 2021*). Thymol and carvacrol works in cohesion to integrate into the biofilm's lipid layer, causing a chemical reaction that destabilizes the EPS, disrupting internal enzymes activities while increasing the structure's permeability. The carvacrol then inhibit enzymes that produces ATP, hindering bacterial metabolism.

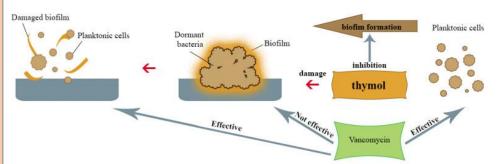
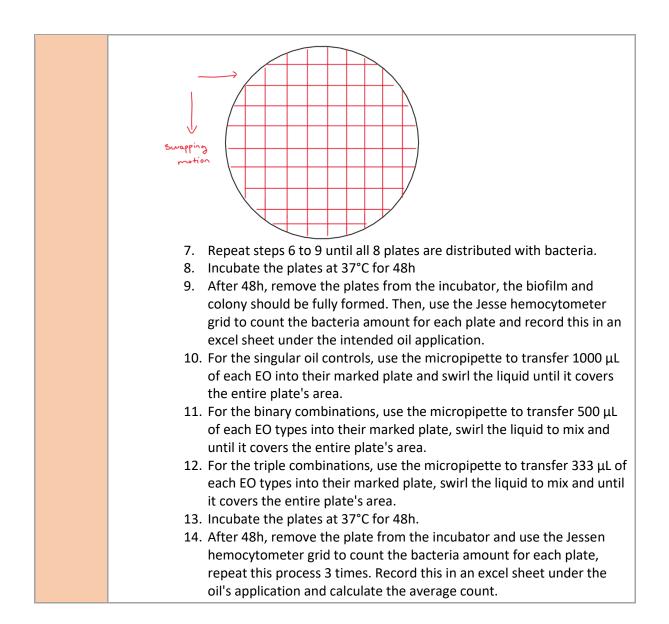


Figure 3 The mechanism in which thymol infiltrate the biofilm and bacteria cell https://pdfs.semanticscholar.org/df8f/7ea4a494558dfc3a88088a1d81a2a59a316f.pdf

Tea Tree oil consists of primarily Terpinen-4-ol, which can interfere with the biofilm matrix's production, quorum sensing and structural integrity allowing it to subsequently inhibit the bacteria's respiration and metabolic events, causing cell death (*Cox et al., 2001*). This action is identical to Thyme oil's, focusing on the inhibition of biofilm facilitating mechanisms and disruptions in the biofilm itself, although Terpinen-4-ol enhances the efficiency and lethality of the process. Lemongrass oil's constituents are phenolic compounds, primarily citral, myrcene and

	geraniol (Ariyanto et al., 2023). Tea Tree oil is especially found to be effective against planktonic cells (Kavanaugh et al., 2012). Geraniol, the principal compound, inhibits S. epidermidis through disintegration of the EPS structure, with subsequent applications reducing the adaptive resistance capabilities of the formation (Kannappan et al., 2017).
Predictions	 Question: What are the synergistic effects of combining various essential oils to create a potent antimicrobial blend specifically tailored for skin infections? Aim: To assess the effectiveness of combining different essential oils for S.Epidermidis antibacterial efficacy in comparison to independent assays.
	Hypothesis: The combined application of Lemongrass, Thyme and Tea Tree oil will produce the most optimal outcome since the complementary mechanisms of their compounds can more effectively disrupt the biofilm and persister cells (carvacrol, thymol and terpinen-4-ol), while suppressing the cell's adaptive resistance (geraniol) for a faster process of synergistic inhibition.

Planning and conducting:


Method	Testing the antimicrobial effects of combinations of essential oil on S. Epidermidis at 1000 μL total application amounts
	Compare this to the antimicrobial effects of singular essential oil application on S. Epidermidis at 1000 μL each type

Independent Variables:	Combinations of EO and each included type's μL concerntration per application			
	Concerntration of each EO type (% of 1000µL)	Combinations		
	50%	Thyme EO + Tea Tree EO		
	50%	Lemongrass EO + Tea Tree EO		
	50%	Lemongrass EO + Thyme EO		
	33.3%	Thyme EO + Lemongrass EO + Tea Tree EO		
Dependent Variables:	Remaining bacterial cell count after EO application (measured using the Jessen bacteria counting chamber technique)			
Controlled (Fair	Controlled Variables			
Test)	Total volume of applied EO (1000μL)			
	Total bacteria suspension volume (supposed to be 2.5ml)			
Type of EO used (Thyme, Lemongrass and Tea Tree)				
	Incubation temperature (37°C)			
	Incubation time (48h)			
	Brand of nutrient agar (Oxoid CM0003)			

	Method of bacterial suspension application (grid formation swapping technique)				
	Measurement system (Jessen grid calculation protocol)				
	S.Epidermidis broth solution (B2 Southern Biological) (same vile used)				
	Size and volume of Agar per plate (9cm diameter)				
Control	Concerntration of each EO type (% of 1000µL)	Type of oil			
	100%	Lemongrass			
	100%	Thyme			
	100%	Tea Tree			

Apparatus	• 8 x 90mm (diameter) Petri Dish
Apparatus:	
	Nutrient Agar Formula
	Fully grown bacteria colony
	8 x Sterilized Pipette
	Metal Swap
	Bunsen Burner
	Heat Safety Mat
	Micropipette
	Incubator
	Ethanol Solution Spray
	Gloves
	Safety Goggles
	Face Mask
	Masking Tape
	Sharpie
	 Jessen hemocytometer grid (1mm x 1mm
	chambers)
	 1 x Lemongrass Essential Oil Bottle
	• 1 x Tea Tree Oil Bottle
	• 1 x Thyme Essential Oil Bottle
	7 x Micropipette tips
	8 x Plastic Test Tube

Method:	1.	Prepare the nutrient agar formula using the container's instructions.
		Equip the gloves, safety goggles and mask.
	3.	Label control plates and experiment plates
	4.	Turn on the Bunsen Burner to a closed flame and hold the metal swap over the heat to sterilize. Remove once the metal tip is red.
	5.	Spray the ethanol solution on the workbench to sterilize and prevent experiment contamination.
	6.	Swipe the metal swap from the grown colony and draw the bacteria into the agar plate in a grid formation until all the broth is transffered.

Method Explanation	ensures that re in the change	ferent combinations at a systematic concerntration esults variation and analysis can be wholly attributed in oil types and their synergistic effectiveness instead total inputted amount changing. This allows for a ent.
	enviroment th conditions in c 3. The 48h time i formation, allo	at temperature at 37°C provides the most accurate at mimics the human body, allowing relevant growth ontext to human's pathogenic conditions. s the optimal period for full bacterial and biofilm owing for an accurate test to measure the oil's against these factors for a comprehensive efficacy
	counting techr	mocytometer grid allows for an industry accurate nique for analyzing the results of EO's inputs on opment. This allows for precise and quantifiable

	5.	Spreading the EO solution across the entire colony as a comprehensive coverage enhances the sensitivity of the assay, where a maximized antimicrobial treatment can be more holistically analysed for its comprehensive effectiveness.
	6.	
	7.	Counting the results 3 times and assesing an average reduces the risks of random sampling errors.

OSA RISK ASSESSMENT FORM

for all entries in (\checkmark) \Box Models & Inventions and \Box Scientific Inquiry

This must be included with your report, log book or entry. One form per entry.

STUDENT(S) NAME: Linh Bui and Maiar Elkhouly

ID: 0024-020

SCHOOL: Adelaide Botanic High School

Activity: Give a brief outline of what you are planning to do.

We are planning on growing the S.Epidermidis bacteria and using it to measure the effects of individual essential oils vs combination of essential oils, which are Thyme, Lemongrass and Tea Tree. The bacteria will be incubated at 37°C at periods of 48h for the biofilm to fully form.

Are there possible risks? Consider the following:

- Chemical risks: Are you using chemicals? If so, check with your teacher that any chemicals to be used are
 on the approved list for schools. Check the safety requirements for their use, such as eye protection and
 eyewash facilities, availability of running water, use of gloves, a well-ventilated area or fume cupboard.
- Thermal risks: Are you heating things? Could you be burnt?
- Biological risks: Are you working with micro-organisms such as mould and bacteria?
- Sharps risks: Are you cutting things, and is there a risk of injury from sharp objects?
- Electrical risks: Are you using mains (240 volt) electricity? How will you make sure that this is safe? Could you use a battery instead?
- Radiation risks: Does your entry use potentially harmful radiation such as UV or lasers?
- Other hazards.

Also, if you are using other people as subjects in an investigation you must get them to sign a note consenting to be part of your experiment.

Risks	How I will control/manage the risk
Listed Below	
(Attach another sheet if needed.)	

Adden another sheet if heeded.)

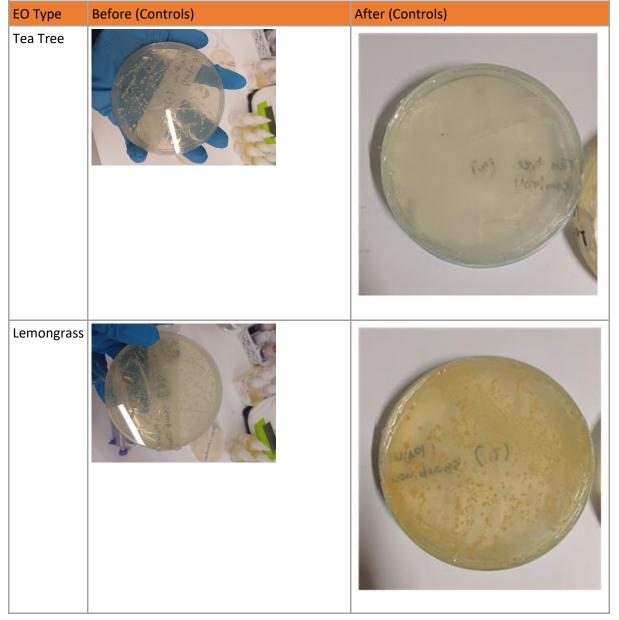
Risk Assessment indicates that this activity can be safely carried out

RISK ASSESSMENT COMPLETED BY (student name(s)): Linh Bui and Maiar Elkhouly

SIGNATURE(S): L.B M.E

D By ticking this box, I/we state that my/our project adheres to the listed criteria for this Category.

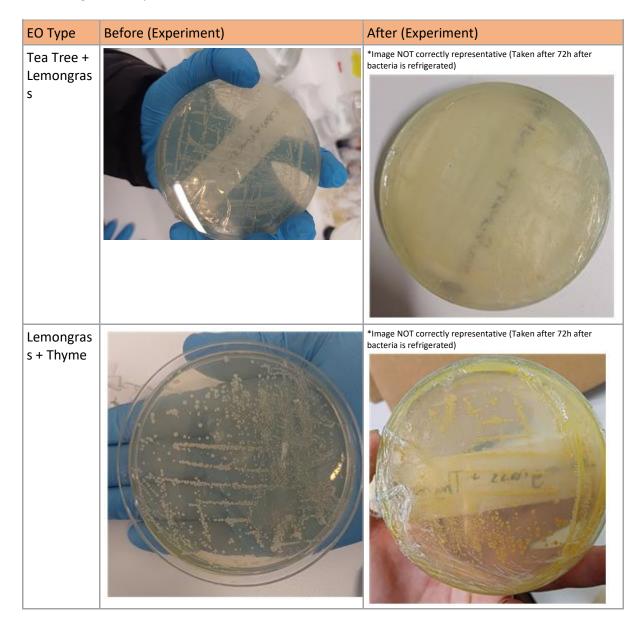
TEACHER'S NAME: <u>Karen Bang</u>

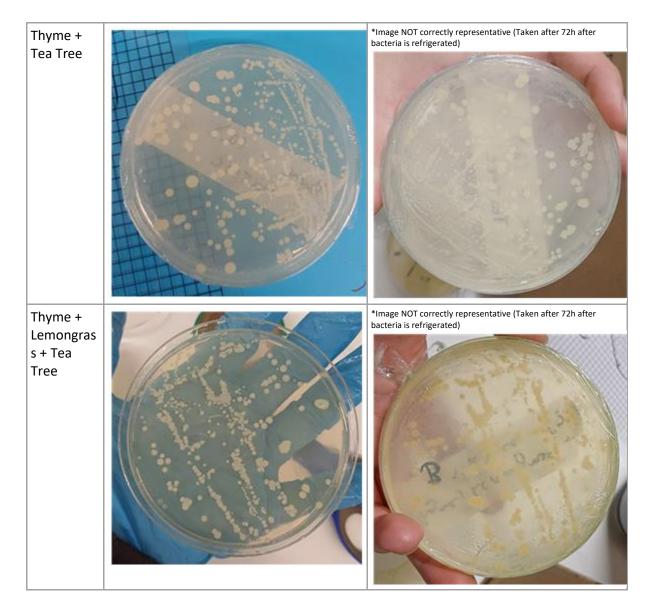

SIGNATURE: _______ DATE: ________ DATE: _______

Risk		Why?	Controlling Risk
	n Burner nal Risk)	This is an ignition source, with temperature ranging above 1000°C, meaning that fatal burns and injury can occur with improper handling. Risks to other equipment and the facility also presents as the heat can ignite flammable materials and cause subsequent damage.	 Ensure that in use, the Bunsen Burner is only activated on a stable and heat safe mat/ surface. Keep all materials far away from the open flame, especially combustible substances and volatile chemicals. Use flame resistant tools to handle items near the flame and keep a safe distant. Never leave the equipment unattended. Equip the required eye ware and PPE, ensure that long hair is tied up. Have a fire extinguisher readily available in case of an emergency.
	ator rical Risk) gical Risks)	This is an electrical device, meaning that malfunctioning components and faulty wires could cause electrical shocks and overheating, leading to potential fire-hazards. Aditionally, bio-hazard also presents as the	 Ensure that it is recently inspected and maintained for preventing technical damage. Keep in a dry enviroment. Always properly seal petri dishes

		can develop bacteria culture, meaning that potential contamination could spread with	culture to prevent spread into the external enviroment
		improper handing and monitoring.	 Regularly disinfect the inside of the incubator.
S	Epidermidis	The bacteria, once entered inside the human body can become opportunistic, leading to potential severe and viral infections.	 Ensure to equip all the neccesary PPE (gloves, safety gogglesetc) in contact with the bacteria. Also check and bandage any open wounds. Regularly disinfect surfaces housing the bacteria (eg: lab counter, incubator) to kill any bacterial residuals. Dispose bacteria contaminated equipment (eg: pipette) in biohazard specified container to prevent spread. Only handle and extract bacteria broth with a certified supervisor present. Only use commercially obtained pure nonpathogenic strains.
A	gar Plate	Agar is harmless, but bacteria or fungi grown on agar may be	 Knowledge of microbiology and aseptic

	1		
	pathogenic, causing bio- safety hazards.	•	techniques is required to minimise risks to people Dispose agar in bio-hazard specified container to regulate contamination. Regularly monitor agar infiltrated bacteria temperature and enviroment. Always equip the required PPE when making agar or using it grow bacteria broth. Always disinfect the cultivation area.
Essential Oil (Chemical Risk)	Eos are volatile organic compounds (VOCs), meaning that they have high vapors at room temperature and can cause irritation and health issues for allergic individuals through inhalation, eye contact or skin contact. Even in small quantities, ingestion of active chemicals inside EO can be fatal	•	Always equip the required PPE when in contact with the chemical (eg: safety goggles, gloves, face masketc) Locate a nearby eye water fountain in case of irritation. Always disinfect the area after a spillage, use absorbable materials and store the EOs in the labelled adequate conditions.


Although aspects of the investigation limited external influences on the experiment's attributions, the bacteria suspension volume consistency was compromised so we took grown bacteria from another colony and populate the agar plates via the same grid technique. This meant that the total bacteria volume was inconsistent in each dish. However, we've decided to analyse the percentage changed in bacteria grid before and after EO application, so the initial variations would not significantly compromise the data's validity. Aditionally, the EO brand should've been the same to ensure a consistent oil extraction process. Otherwise, the repeated 3 counting times ensures that potentials for human calculation errors is decreased and that results are more reliable.



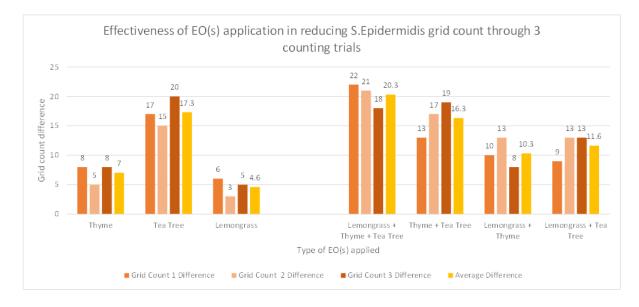
Processing and analysing:

Observations: The bacterium for lemongrass is stained yellow due to the EO's extract being a yellow, orange hue. Tea tree is the most effective in removing whole strands of bacteria, while also decreasing the dollop sizes.

Observations: Similar to the controls, any combination with lemongrass demostrated a colour change. Additionally, both the Thyme + Lemongrass combination and the Tea Tree + Lemongrass combinations had the least noticeable volume change. Unlike the results with Lemongrass, combinations with the inclusion of Tea Tree proved effective. Tea tree individually showcased drastic density changes. However, it is worth noting that the changes included with lemongrass application in this trial is more effective than the last, and that EOs decreases the size of the bacteria strands instead of wiping out clusters entirely.

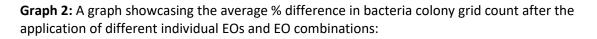
(Observations were noted at the 48h period)

Table 1: A table showing the grid count of S. Epidermidis colony after applied EO treatment. The average is conducted over three different counting times to ensure maximal results accuracy.


ЕО Туре	Grid Count (Before)	Grid Count 1	Grid Count 2	Grid Count 3	Average Count
Thyme (Control)	123	115	118	115	116
Tea Tree (Control)	155	138	140	135	137.7

Lemongrass (Control)	176	170	173	171	171.3
Lemongrass + Thyme + Tea Tree	158	136	137	140	137.7
Thyme + Tea Tree	139	126	122	120	122.7
Lemongrass + Thyme	160	150	147	152	149.7
Lemongrass + Tea Tree	185	176	172	172	173.3

Table 2: A table showing the average difference in S.Epidermidis colony before and after applying the EO treatments, averaged over the three counting times.


ЕО Туре	Grid Count 1 Difference	Grid Count 2 Difference	Grid Count 3 Difference	Average Difference
Thyme (Control)	8	5	8	7
Tea Tree (Control)	17	15	20	17.3
Lemongrass (Control)	6	3	5	4.6
Lemongrass + Thyme + Tea Tree	22	21	18	20.3
Thyme + Tea Tree	13	17	19	16.3
Lemongrass + Thyme	10	13	8	10.3
Lemongrass + Tea Tree	9	13	13	11.6

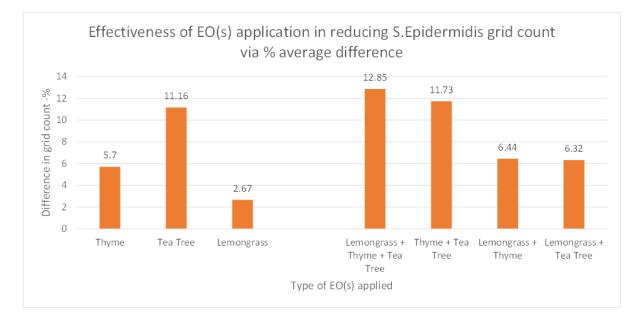

Graph 1: A graph showcasing the average numerical difference in bacteria colony grid count after the application the individual EOs and EO combinations over three different counts.

Table 3: Average - A table showing the percentage difference in S.Epidermidis colony before and after applying the EO treatment, calculated through the average difference.

ЕО Туре	Average Count	Average Difference	Average % Difference
Thyme (Control)	116	7	5.7
Tea Tree (Control)	137.7	17.3	11.16
Lemongrass (Control)	171.3	4.7	2.67
Lemongrass + Thyme + Tea Tree	137.7	20.3	12.85
Thyme + Tea Tree	122.7	16.3	11.73
Lemongrass + Thyme	149.7	10.3	6.44
Lemongrass + Tea Tree	173.3	11.7	6.32

Analysis and Patterns:

The investigation compared the binary and triple combinations of Thyme, Lemongrass and Tea Tree EO in their synergestic effects with individual application. Results shows that all three Lemongrass, Tea Tree and Thyme was the most statistically effective oil combination because it had the highest bacteria percentage decreasement and also the highest average numerical decreasement. The solution's major chemical compounds include, terpinen-4-ol, thymol, carvacrol, citral and geraniol, which, as described in the hypothesis, provides the most effective antimicrobial effect due to their ability to infiltrate biofilms and compromise the enzyme production to halt subsequent biofilm developments. This also explains that while all the mixture's compound concerntration is lessened, their synergestic abilities together allows for a more effective and comprehensive bacteria wipeout, leading to the substance blend having a greater antimicrobial effect than its singular counterpart. Graph 2 further demostrates that an individual EO has less antimicrobial efficacy than the same EO mixed with another compound since their infliction on the bacteria and biofilm is less comprehensive. For example, even at a 1000 μ L concerntration, Thyme's lack of ability to kill

persister will reduce its potency, compared to Thyme and Tea Tree at 500µL each complementing one another to infiltrate the biofilm, while further utilising Tea Tree's ability to disintegrate persister cells. Aditionally, although the triple combination was most effective, it only exceeded Tea Tree (11.16%) and Thyme + Tea Tree (11.73%), meaning that the terpinen-4-ol and thymol/ carvacrol compounds in Thyme and Tea Tree are also highly synergestic to one another. Tea Tree especially has the best average synergestic and individual effects, being in both the 1st, 2nd and 3rd most effective composition/s, as demostrated in the data. Throughout, lemongrass has significantly lower individual and complementary effects compared to the other EOs, this could be attributed to their singular capability to reduce the biofilm without having the same mechanism of disrupting enzyme functions like Thyme and Tea Tree.

Evaluation:

Source of Error	Improvements
Carrier oil and Dilution (Concerntration: 50μL, 100μLetc in comparison)	Test a broader range of EO concerntration through dilution methods to determine the MIC (Minimum Inhibitory Concerntration), providing a baseline comparison model for each EO's effectiveness, enhancing results reliability. This information would allow for us to conduct further analysis to attribute a certain percentage of the bacteria's decreasement to a specific oil type. Aditionally, dilution further enhances the relevancy of the study as when applying EO to bacterial infections in real life, individuals usually dilute the solution to reduce the chemical irritation of a high concerntration.
Data collection method	Although this collection procedure was effective, it doesn't account for size differences in the bacteria strands, meaning that although the bacteria dollop may reduce in size, if it occupies a grid, it must be counted as a one. This leads to over-estimations of bacteria colonies and data inaccuracies since detailed changes is not fully noted. We would instead be using an inhibition diameter to assess the EO's effectiveness since it accounts for minor conditions changes.
Incubation Periods	The bacteria were incubated and checked after 48h, however, to assess the oil's influence more holistically over time, the incubation time should be more periodic at 1h, 10h, 24h, 48h and 72h. This reduces the risk of systematic error and allows for the results to be more comprehensive.
Negative Control	A negative control would allow us to observe and analyse the impacts of EO and EO compositions on a bacteria colony more holistically.
Microscope	Assesment of the bacterial changes under a microscope would further enhance the contextual understanding of the study, providing specific information on the how and why some compounds were more effective than other.
Trial Accuracy	The practical was only conducted once, meaning that its findings and results are less reliable due to potential errors, in future studies, we would be conducting this same method over more occasions to reduce the risk of errors severely infiltrating the results.

Aditional Research:

• Antiseptics treatment vs EO and EO combinations?

- Expanding the research to diverse types and concerntrations of EO vs EO combinations and analyse their effectiveness?
- Specific study into analysing the biofilm disruption of each EO and EO combination?
- What is the most effective application method for reducing S. Epidermidis growth (eg: dressing model)?

Usefulness: The result offers aditional ideation for researchers to develop more effective, and cost-effective cures for persistent skin infections, with sustainably sourced ingredients that can disrupt the microfilm structure and help reduce the frequency of hospital-induced infections for better global healthcare outcomes. It is recommended that the three combinations of EOs is the most effective and should be applied to the affected area however, aditional safety research must be conducted to determine the safety of the solution before application, considering the chemically active compounds that could cause irritation.

Conclusion:

Overall, the combination of Lemongrass, Tea Tree and Thyme holds the most effective antimicrobial effect for S. Epidermidis, decreasing the bacteria count be an average of 20.3 and 12.85% due to their complementary antimicrobial capabilities in a blend. This result supports the hypothesis' understanding. Tea Tree was the most potent compound both individually and synergistically, being a constituent of the 2nd most effective blend Thyme + Tea Tree at 11.73% bacterial decreasement, and also the most significantly effective control compound at 11.16%. Evidently, lemongrass was the least effective compound in singular application and also in a mixture, however, on average, an EO in combination has more antimicrobial efficacy than the individual application.

Assistance:	We would like to extend a special acknowledgement to our lab supervisor Karen
	Bang for her guidance and support in the investigation. Also thank you to ABHS for
	providing us with the neccesary equipment and materials.

2526 Words - not including appendix, references, headings, titles, figure, captions, tables and log book/journal

Appendix:

ЕО Туре	Grid Count (Before)	Grid Count (After)	Difference
Thyme	123	115	8
Tea Tree	155	138	17
Lemongrass	176	170	6
All 3	158	136	22
Thyme + Tea Tree	139	126	13
Lemongrass + Thyme	160	150	10
Lemongrass + Tea Tree	185	176	9

Count 1:

Count 2:

ЕО Туре	Grid Count (Before)	Grid Count (After)	Difference
Thyme	123	118	5
Tea Tree	155	140	15

Lemongrass	176	173	3
All 3	158	137	21
Thyme + Tea Tree	139	122	17
Lemongrass + Thyme	160	147	13
Lemongrass + Tea Tree	185	172	13

Count 3:

ЕО Туре	Grid Count (Before)	Grid Count (After)	Difference
Thyme	123	115	8
Tea Tree	155	135	20
Lemongrass	176	171	5
All 3	158	140	18
Thyme + Tea Tree	139	120	19
Lemongrass + Thyme	160	152	8
Lemongrass + Tea Tree	185	172	13

Bibliography:

Alu'datt, M.H., Rababah, T., Alhamad, M.N., Gammoh, S., Al-Mahasneh, M.A., Tranchant, C.C. and Rawshdeh, M. (2018). Chapter 15 - Pharmaceutical, Nutraceutical and Therapeutic Properties of Selected Wild Medicinal Plants: Thyme, Spearmint, and Rosemary. [online] ScienceDirect. Available at: https://www.sciencedirect.com/science/article/abs/pii/B9780128146255000145.

Ariyanto, E. (2023). Peningkatan Pengetahuan Masyarakat Melalui Pelatihan Pembuatan Minyak Atsiri di Kelurahan Plaju Darat Kota Palembang. [online] Available at: <u>https://www.researchgate.net/figure/The-structures-of-the-flavonoids-and-phenolic-compounds-in-C-</u>

citratus_fig1_335484905#:~:text=Lemongrass%20contains%20essential%20oils%20such,insect%2C%20and%20anti%2Dcan cer. [Accessed 25 Jun. 2024].

Büttner, H., Mack, D. and Rohde, H. (2015). Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Frontiers in Cellular and Infection Microbiology, [online] 5. doi: https://doi.org/10.3389/fcimb.2015.00014.

Cleveland Clinic (2022). Staph Infection (Staphylococcus Infection). [online] Cleveland Clinic. Available at: <u>https://my.clevelandclinic.org/health/diseases/21165-staph-infection-staphylococcus-infection</u> [Accessed 25 Jun. 2024].

El Abed, S., Koraichi Saad, I., Latrache, H. and Ghizlane, Z. (2011). Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. [online] ResearchGate. Available at: <u>https://www.researchgate.net/publication/272291292</u> Carvacrol and thymol components inhibiting Pseudomonas aer uginosa adherence and biofilm_formation [Accessed 25 Jun. 2024].

Fey, P.D. and Olson, M.E. (2010). Current Concepts in Biofilm Formation of Staphylococcus Epidermidis. Future Microbiology, [online] 5(6), pp.917–933. doi: <u>https://doi.org/10.2217/fmb.10.56</u>.

Foster, T.J. (2020). Surface Proteins of Staphylococcus epidermidis. Frontiers in Microbiology, 11. doi: <u>https://doi.org/10.3389/fmicb.2020.01829</u>.

Gao, S., Liu, G., Li, J., Chen, J., Li, L., Li, Z., Zhang, X., Zhang, S., Thorne, R.F. and Zhang, S. (2020). Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Frontiers in Cellular and Infection Microbiology, [online] 10, p.603858. doi: https://doi.org/10.3389/fcimb.2020.603858.

Health, P.A. (2018). Essential oils: Mechanism of action on pathogenic bacteria | PlusVet Animal Health. [online] Plusvet. Available at: <u>https://plusvet.eu/2018/01/18/essential-oils-mechanism-of-action-on-pathogenic-bacteria/#:~:text=Adenosine%20triphosphate%20(ATP)%20is%20the</u>.

Joubert, I.A., Otto, M., Strunk, T. and Currie, A.J. (2022). Look Who's Talking: Host and Pathogen Drivers of Staphylococcus epidermidis Virulence in Neonatal Sepsis. International Journal of Molecular Sciences, 23(2), p.860. doi: https://doi.org/10.3390/ijms23020860.

Kannappan, A., Sivaranjani, M., Srinivasan, R., Rathna, J., Pandian, S.K. and Ravi, A.V. (2017). Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. Journal of Medical Microbiology, 66(10), pp.1506–1515. doi: <u>https://doi.org/10.1099/jmm.0.000570</u>.

Kavanaugh, N.L. and Ribbeck, K. (2012). Selected Antimicrobial Essential Oils Eradicate Pseudomonas spp. and Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 78(11), pp.4057–4061. doi: <u>https://doi.org/10.1128/aem.07499-11</u>.

Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A. and Fecka, I. (2020). Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules, [online] 25(18), p.4125. doi: https://doi.org/10.3390/molecules25184125.

Martínez-Santos, V.I., Torres-Añorve, D.A., Echániz-Aviles, G., Parra-Rojas, I., Ramírez-Peralta, A. and Castro-Alarcón, N. (2022). Characterization of Staphylococcus epidermidis clinical isolates from hospitalized patients with bloodstream infection obtained in two time periods. PeerJ, 10, p.e14030. doi: <u>https://doi.org/10.7717/peerj.14030</u>.

Mollea, C., Bosco, F. and Fissore, D. (2022). Agar Plate Methods for Assessing the Antibacterial Activity of Thyme and Oregano Essential Oils against S. epidermidis and E. coli. Antibiotics, 11(12), p.1809. doi: https://doi.org/10.3390/antibiotics11121809.

Nguyen, L., DeVico, B., Mannan, M., Chang, M., Rada Santacruz, C., Siragusa, C., Everhart, S. and Fazen, C.H. (2023). Tea Tree Essential Oil Kills Escherichia coli and Staphylococcus epidermidis Persisters. Biomolecules, [online] 13(9), p.1404. doi: https://doi.org/10.3390/biom13091404.

Oliveira, S.F., SaraivaL.M. and Carvalho, S.M. (2023). Staphylococcus epidermidis biofilms undergo metabolic and matrix remodeling under nitrosative stress. Frontiers in Cellular and Infection Microbiology, [online] 13. doi: https://doi.org/10.3389/fcimb.2023.1200923.

Orchard, A. and van Vuuren, S. (2017). Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evidence-Based Complementary and Alternative Medicine, [online] 2017, pp.1–92. doi: <u>https://doi.org/10.1155/2017/4517971</u>.

Otto, M. (2009). Staphylococcus epidermidis — the 'accidental' pathogen. Nature Reviews Microbiology, [online] 7(8), pp.555–567. doi: <u>https://doi.org/10.1038/nrmicro2182</u>.

SA Health (n.d.). Infection and injury management. [online] <u>www.sahealth.sa.gov.au</u>. Available at: <u>https://www.sahealth.sa.gov.au/wps/wcm/connect/public+content/sa+health+internet/clinical+resources/clinical+programs+and+practice+guidelines/infection+and+injury+management/</u> [Accessed 25 Jun. 2024].

Science Direct (2010). Tea Tree Oil - an overview | ScienceDirect Topics. [online] Sciencedirect.com. Available at: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tea-tree-oil.

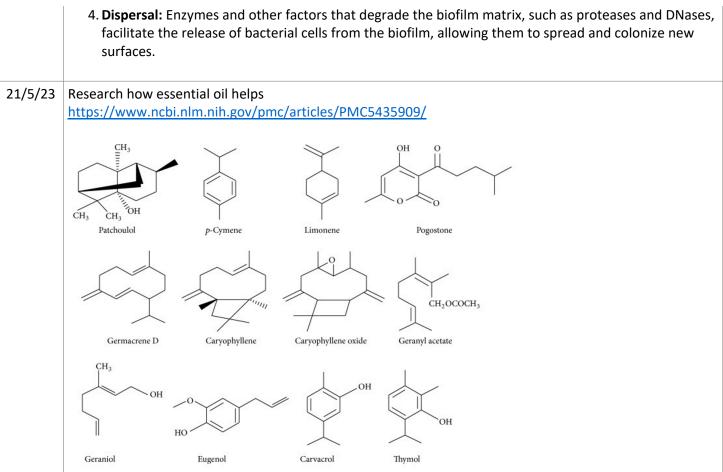
Sharma, P., James, P., Mack and Rojtman, D. (2012). TEN HIGHLY EFFECTIVE ESSENTIAL OILS INHIBIT GROWTH OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) AND METHICILLIN SENSITIVE STAPHYLOCOCCUS AUREUS (MSSA). [online] Available at: <u>https://naturalingredient.org/wp/wp-content/uploads/4863.pdf</u>.

Siciliano, V., Rosa Anna Passerotto, Chiuchiarelli, M., Gabriele Maria Leanza and Ojetti, V. (2023). Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life, 13(5). doi: https://doi.org/10.3390/life13051126.

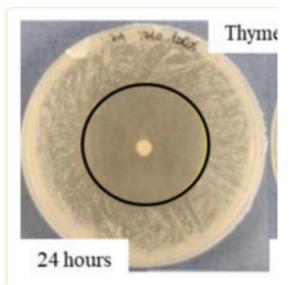
Soković, M., Glamočlija, J., Marin, P.D., Brkić, D. and Griensven, L.J.L.D. van (2010). Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules, 15(11), pp.7532–7546. doi: https://doi.org/10.3390/molecules15117532.

Swamy, M.K., Akhtar, M.S. and Sinniah, U.R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: an Updated Review. Evidence-Based Complementary and Alternative Medicine, [online] 2016(PMC5206475), pp.1–21. doi: <u>https://doi.org/10.1155/2016/3012462</u>.

Walczak, M., Michalska-Sionkowska, M., Olkiewicz, D., Patrycja Tarnawska and Oliwia Warżyńska (2021). Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules, [online] 26(9), pp.2723–2723. doi: https://doi.org/10.3390/molecules26092723.


Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A. and Szumny, A. (2019). Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules, 24(11), p.2130. doi: <u>https://doi.org/10.3390/molecules24112130</u>.

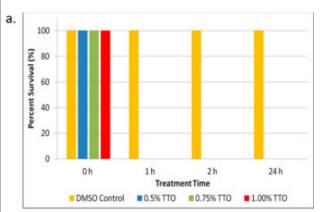
Oliphant Science Awards- STEM Inquiry - What are the synergistic effects of combining various essential oils to create a potent antimicrobial blend specifically tailored for skin infections? - Linh Bui and Maiar Elkhouly


Friday, 28 June 2024 12:57 PM

Dates	Photos and Comments
15/5/24	Introduction
	Name: Linh Bui and Maiar Elkhouly
	Category: Scientific Inquiry (A topic related to biology)
	School: Adelaide Botanic High School
17/5/24	• From the beginning, we knew that the inquiry should be regarding a topic in biochemistry since we're both highly interested and relatively knowledgeable in the topic. The brainstorming included a variety of topics:
	1. Seaweed extracts as UV-blocking agents for sunscreen formulations?
	• Find the UV-blocking compounds from different species of seaweed.
	 Evaluate the UV absorption spectra of the extracts.
	 Formulate sunscreen products incorporating the seaweed extracts.
	• Test the effectiveness of these formulations in blocking UV radiation.
	\circ Compare the performance with commercial sunscreen products.
	2. Effects of combining various essential oils to create a potent antimicrobial blend specifically tailored for oral hygiene?
	 Select a common oral pathogen to cultivate
	○ Staphylococcus aureus
	 Streptococcus pyogenes
	 Pseudomonas aeruginosa
	 Test the effectiveness of some combinations of EO on reducing bacteria colony and compare this to individual application
	3. Food waste extract as a natural UV absorber (eg: citrus peel)
	\circ Extract the food waste from selected ingredients
	\circ Evaluate the UV absorption spectra of the extracts.
	 Formulate sunscreen products incorporating the seaweed extracts.
	 Test the effectiveness of these formulations in blocking UV radiation and compare to a typical brand of sunscreen
	4. Synergistic effects of combining various essential oils to create a potent antimicrobial blend for skin infections?
	 Built on the premise of utilising antiseptics in bandages
	\circ Select a common skin infection to cultivator to grow
	 Staphylococcus aureus
	 Staphylococcus epidermidis
	\circ Test the effectiveness of some combinations of EO on reducing bacteria colony and compare
	this to individual application

	 From these ideas, which is centered around the theme of sunscreen and essential oil, we decided to investigate the synergestic effects of combining EOs, to create an antimicrobial blend and assessing the effectiveness of the mixture to the individual application for tackling a common skin infection bacteria. Title: What are the synergistic effects of combining various essential oils to create a potent antimicrobial blend energifically tailored for skin infections?
	antimicrobial blend specifically tailored for skin infections?
	Aim: To asses the effectiveness of combining different essential oils for a bacteria (TBD) and assesing its antibacterial efficacy in comparison to a singular EO application.
	Bacteria: Staphylococcus aureus or Staphylococcus epidermidis were the two options since both are prominent causes noscomical skin infections. However, when discussing this with our lab supervisor, we've been notified that only non-pathogenic bacterias can be used, meaning that our remaining option is S.Epidermidis . This bacteria is a typical component of the skin flora, meaning that it is commonly harmless, but once entered into the human body, the optimal temperature and sterile enviroment allows the bacteria to cultivate into an opportunistic and viral pathogen. Under safety guidelines, monitorisation and with the adequate PPE, this can be closely replicated using an incubator set at the human body temperature condition.
	To: Bui, Linh (School SA) < <u>Sunny.BuiHuynh363@schools.sa.edu.au</u> > Subject: Re: Oliphant Science Award Experiment
	Hi Linh I have received your mail and the list of bacteria you would like to grow are pathogens. We are not allowed to grow any live pathogens at school unfortunately. Commercially obtained pure non-pathogenic stains can only be used at school.
20/5/24	Research Background (bacteria) (how it is contractedetc)
	• S.Epidermidis is especially hard to treat since it forms biofilms that embeds the bacteria inside a matrix of impermeable "glue". There are 4 key steps in a biofilm's formation, these are adhesion, accumulation, maturation and dispersion.
	1. Adhesion: In this stage, the bacteria adhere/ stick to an abiotic host, specifically those with extracellular matrix components of fibronectin, collagen, and fibrinogen through the release of a series of surface proteins called adhesins. First, An autolysin degrades the bacterial cell wall and expose adhesins that bind to surfaces. , SdrG specifically binding to fibrinogen, aiding in the initial adherance process. Through the biofilm, S.Epidermidis is protected from external impacts, while being glued to a surface, aiding its ability tp spread.
	2. Accumalation: Next, the accumalation stage is when the cell-cell adhesion is further developed, enhancing the density, structure and stability of the biofilm. The IcaADBC operon enzyme synthesizes PIA/PNAG, a polysaccharide responsible for the action and also for the facilitation of microcolonies.
	In this stage, the Embp further binds to ECM components and further sticks the biofilm on the host's surface. This also includes Aap, facilitating cell-cell adhesion and biofilm accumulation, and Bhp which further contributes to this intercellular adhesion, and also the development of cells in the biofilm.

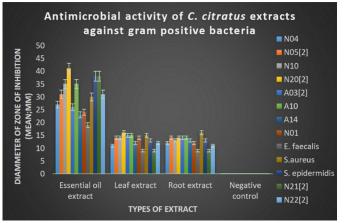
• The chemical compounds inside each essential oil is the key ingredient to their antimicrobial capabilities.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774300/

Thyme oil's trial effectiveness against S.Epidermidis showcasing its halo of inhibition.

Thyme oil contains primarily thymol and carvacrol constituents, which are terpenes phenolic compounds known for their antimicrobial efficacy against S.Epidermidis, further inhibiting its biofilm formation. The carvacrol molecule interferes with the gene coding of quorum sensing, the communication system facilitating biofilm formation, allowing for disruption in the bacteria's colony ability to form and maintain biofilms for virulence. Thymol and carvacrol works in cohesion to intergrate into the biofilm's lipid layer,

causing a chemical reaction that destabilizes the EPS, disrupting internal enzymes activities while increasing the structure's permeability. The carvacrol then inhibit enzymes that produces ATP, hindering bacterial metabolism.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125478/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526169/

This graph details Tea Tree Oil's effectiveness against persister S.Epidermidis cells, which are "a small subpopulation of non-growing bacteria within a population that can survive long exposures to antibiotic treatment. Following antibiotic removal, persister cells can regrow and populate, playing a key role in the chronic reoccurrence of bacterial infections" (Nguyen et al., 2023).

Tea Tree oil consists of primarily Terpinen-4-ol, which can interfere with the biofilm matrix's production, quorum sensing and structural integrity allowing it to subsequently inhibit the bacteria's respiration and metabolic events, causing cell death (*Cox et al., 2001*). This action is parallel to Thyme oil's, focusing on the inhibition of biofilm facilitating mechanisms and disruptions in the biofilm itself, although Terpinen-4-ol enhances the efficiency and lethality of the process. Lemongrass oil's constituents are phenolic compounds, primarily citral, myrcene and geraniol (*Ariyanto et al., 2023*). Tea Tree oil is especially found to be effective against planktonic cells (*Kavanaugh et al., 2012*).

https://www.sciencedirect.com/science/article/pii/S1026918520300238

Research showcasing Lemongrass Oil's effectiveness against S.epidermidis amongst other bacterias. The pure essential oil was more effective against S. epidermidis in comparison to S. aureus, which showed 1-fold wider zone of inhibition in S. epidermidis. Geraniol, the principal compound, inhibits S. epidermidis through disintegration of the EPS structure, with subsequent applications reducing the adaptive resistance capabilities of the formation. This means that especially the geraniol component in lemongrass is most responsible for its effectiveness against S.Epidermidis and its biofilm.

a result, along with t	https://pubmed.ncbi.nlm.nih.gov/28893370/ Understanding the mechanism of action in which S.Epidermidis forms biofilm and its survival capabilities as a result, along with the potential chemical compounds that separately, have been proven to be effective against the bacteria, we are now going to develop a hypothesis and a method to test the EO's effectiveness in synergy.		
optimal outcome sin effectively disrupt th	nbined application of Lemongrass, Thyme and Tea Tree oil ce the complementary mechanisms of their individual cor le biofilm and the planktonic cells in complementary, then geraniol) for a faster process of synergistic production inh	mpounds can more n, suppressing the cell's	
Method Draft			
Preparation of Esse Preparation of Bact Cultivate Staphyloce			
Control Groups: 1. Individual Essenti - Apply Individually - Apply Individually - Apply Individually	y Thyme Oil y Tea Tree Oil		
Antimicrobial Testir Essential Oil Combin 1. Thyme Oil + To 2. Lemongrass O 3. Lemongrass O 4. Thyme Oil + Le	nations: ea Tree Oil vil + Tea Tree Oil		
 Spread the adjust surface using a ster Apply 1000 μL of For combination desired final concer Incubate the plat Count the bacteria 	e nutrient agar plates. ted bacterial suspension (2.5ml) evenly across the agar ile cotton swab. each test solution onto the inoculated agar plates. treatments, mix equal volumes of the oils to achieve ntrations before application. res at 37°C for 48 hours. a using a Jesse hemocytometer grid. t for all control and test groups.		
assumptions made for	e draft lacked many details to ensure that replication of th or the steps. So we built upon the draft to enhance the sp arity with subsequent investigations:		
Independent	Combinations of EO and each included type's µL		

Concerntration of each EO
type (% of 1000μL)Combinations50%Thyme EO + Tea Tree EO

	50%	Lemongrass EO + Tea Tree EO
	50%	Lemongrass EO + Thyme E
	33.3%	Thyme EO + Lemongrass E + Tea Tree EO
Dependent Variables:	Remaining bacterial cell count after EO application (measured using the Jessen bacteria counting chamber technique)	
Controlled (Fair	Controlled Variables	
Test)	Total volume of applied EO (1000μL)	
	Total bacteria suspension volume (2.5ml)	
	Type of EO used (Thyme, Lemongrass and Tea Tree)	
	Incubation temperature (30°C)	
	Incubation time (48h)	
	Brand of nutrient agar	
	Method of bacterial suspension application (grid formation swapping technique)	
	Measurement system (Jessen grid calculation protocol)	
	S.Epidermidis broth solution (same vile)	
	Size of Agar per plate (9cm	n diameter)
Control	Concerntration of each EC type (% of 1000µL)	D Type of oil
	100%	Lemongrass
	100%	Thyme
	100%	Tea Tree

Apparatus:	 8 x 90mm (diameter) Petri Dish
	 Nutrient Agar Formula
	 Fully grown bacteria colony
	 8 x Sterilized Pipette
	 Micropipette
	 Incubator
	• Gloves
	 Safety Goggles
	Face Mask
	 Masking Tape
	• Sharpie
	 Jesse hemocytometer grid
	• 1 x Lemongrass Essential Oil
	Bottle
	• 1 x Tea Tree Oil Bottle
	• 1 x Thyme Essential Oil Bottle

Method:	 Prepare the nutrient agar formula using the container's instructions Equip the gloves, safety goggles and mask Label control plates and experiment plates Use a sterilized pipette to input 2.5ml of S.Epidermidis broth and swirl the bacteria around until the plate is covered. Repeat steps 6 to 9 until all 8 plates are distributed with bacteria Incubate the plates at 30°C for 48h
	7. After 48h, remove the plates from the incubator, the biofilm and colony should be fully formed. Then, use the Jesse hemocytometer grid to count t bacteria amount for each plate and record this in an excel sheet under the intended oil application.
	 8. For the singular oil controls, use the micropipette to transfer 1000 μL of ea EO into their marked plate and swirl the liquid until it covers the entire plat area.
	9. For the binary combinations, use the micropipette to transfer 500 μ L of eac EO types into their marked plate, swirl the liquid to mix and until it covers t entire plate's area.
	10. For the triple combinations, use the micropipette to transfer 333 μ L of each EO types into their marked plate, swirl the liquid to mix and until it covers the entire plate's area.
	 11. Incubate the plates at 30°C for 48h 12. After 48h, remove the plate from the incubator and use the Jesse hemocytometer grid to count the bacteria amount for each plate, repeat the process 3 times. Record this in an excel sheet under the oil's application an calculate the average count.

		Models & Inventions a ed with your report, log book or en	
STUDE	NT(S) NAME: Linh Bui and M	/aiar Elkhouly	ID: <u>0024-020</u>
	L: Adelaide Botanic High S		
Activity:	Give a brief outline of what	you are planning to do.	
esser	tial oils vs combination of e	S.Epidermidis bacteria and using it essential oils, which are Thyme, Len ods of 48h for the biofilm to fully form	nongrass and Tea Tree. The bacteri
 Cher on the eyew Ther Biolo Shar Election you the Radii Other 	he approved list for schools. wash facilities, availability of i mal risks: Are you heating th ogical risks: Are you working rps risks: Are you cutting thin trical risks: Are you using ma use a battery instead? iation risks: Does your entry or hazards.	emicals? If so, check with your teache Check the safety requirements for the running water, use of gloves, a well-ve ings? Could you be burnt? with micro-organisms such as mould <i>i</i> gs, and is there a risk of injury from s ins (240 volt) electricity? How will you use potentially harmful radiation such	ir use, such as eye protection and ntilated area or fume cupboard. and bacteria? harp objects? make sure that this is safe? Could as UV or lasers?
	you are using other people a art of your experiment.	as subjects in an investigation you mi	ust get them to sign a note consenting
1			
(Attach	another sheet if needed.)		
(Attach	,	it indicates that this activity can be	e safely carried out
	Risk Assessmen	nt indicates that this activity can be r (student name(s)): Linh Bui and Ma	5
	Risk Assessmen	2	5
RISK AS	Risk Assessmen	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS SIGNAT	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state that	2	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state that	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>karen Bang</u>	r (student name(s)): Linh Bui and Ma	iar Elkhouly
RISK AS	Risk Assessmen SSESSMENT COMPLETED BY URE(S): L.B M.E cking this box, I/we state the ER'S NAME: <u>Karen Bang</u> URE: <u>CCM</u>	r (student name(s)): <u>Linh Bui and Ma</u> at my/our project adheres to the listed DATE:	iar Elkhouly

presents as the heat can ignite

flammable materials and cause

• Keep all materials far away from the open flame,

Risk	Why?	Controlling Risk
Bunsen Burner (Thermal Risk)	This is an ignition source, with temperature ranging above 1000°C, meaning that fatal burns and injury can occur with improper handling. Risks to other equipment and the facility also presents as the heat can ignite flammable materials and cause subsequent damage.	 Ensure that in use, the Bunsen Burner is only activated on a stable and heat safe mat/ surface. Keep all materials far away from the open flame, especially combustible substances and volatile chemicals. Use flame resistant tools to handle items near the flame and keep a safe distant. Never leave the equipment unattended. Equip the required eye ware and PPE, ensure that long hair is tied up. Have a fire extinguisher readily available in case of an emergency.
Incubator (Electrical Risk) (Biological Risks)	This is an electrical device, meaning that malfunctioning components and faulty wires could cause electrical shocks and overheating, leading to potential fire-hazards. Aditionally, bio- hazard also presents as the incubator's temperature can develop bacteria culture, meaning that potential contamination could spread with improper handing and monitoring.	 Ensure that it is recently inspected and maintained for preventing technical damage. Keep in a dry enviroment. Always properly seal petri dishes with bacteria culture to prevent spread into the external enviroment Regularly disinfect the inside of the incubator.

S.Epidermidis	The bacteria, once entered inside the human body can become opportunistic, leading to potential severe and viral infections.	 Ensure to equip all the neccesary PPE (gloves, safety gogglesetc) in contact with the bacteria. Also checl and bandage any open wounds. Regularly disinfect surfaces housing the bacteria (eg: lal counter, incubator) to kill any bacterial residuals. Dispose bacteria contaminated equipment (eg: pipette) in biohazard specified container to prevent spread. Only handle and extract bacteria broth with a certified supervisor present. Only use commercially obtained pure nonpathogenic strains.
fungi growi	mless, but bacteria or n on agar may be , causing bio-safety	extract bacteria broth with a certified superviso present. • Only use commercially obtained pure
		temperature and enviroment. • Always equip the required PPE when making agar or

		using it grow bacteria broth. Always disinfect the cultivation area.
Essential Oil (Chemical Risk)	Eos are volatile organic compounds (VOCs), meaning that they have high vapors at room temperature and can cause irritation and health issues for allergic individuals through inhalation, eye contact or skin contact. Even in small quantities, ingestion of active chemicals inside EO can be fatal	 Always equip the required PPE when in contact with the chemical (eg: safety goggles, gloves, face masketc) Locate a nearby eye water fountain in case of irritation. Always disinfect the area after a spillage, use absorbable materials and store the EOs in the labelled adequate conditions.

I/we consider the inherent level of risk (risk level without control measures) to be:

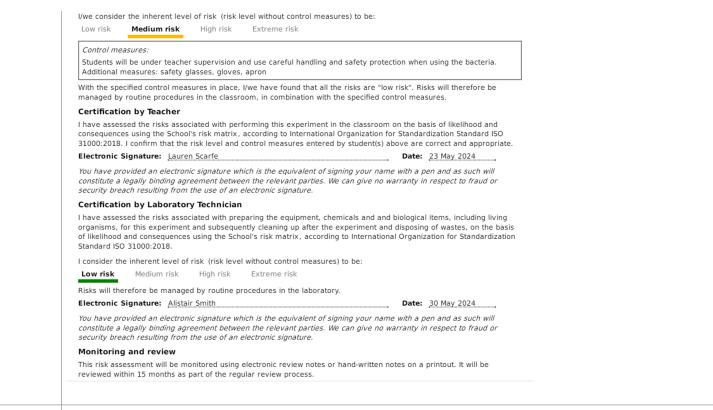
Low risk Medium risk High risk Extreme risk

Control measures:

Students will be under teacher supervision and use careful handling and safety protection when using the bacteria. Additional measures: safety glasses, gloves, apron

With the specified control measures in place, I/we have found that all the risks are "low risk". Risks will therefore be managed by routine procedures in the classroom, in combination with the specified control measures.

Certification by Teacher


I have assessed the risks associated with performing this experiment in the classroom on the basis of likelihood and consequences using the School's risk matrix, according to International Organization for Standardization Standard ISO 31000:2018. I confirm that the risk level and control measures entered by student(s) above are correct and appropriate. Electronic Signature: Lauren Scarfe

Date: 23 May 2024

You have provided an electronic signature which is the equivalent of signing your name with a pen and as such will constitute a legally binding agreement between the relevant parties. We can give no warranty in respect to fraud or security breach resulting from the use of an electronic signature.

Certification by Laboratory Technician

I have assessed the risks associated with preparing the equipment, chemicals and and biological items, including living organisms, for this experiment and subsequently cleaning up after the experiment and disposing of wastes, on the basis of likelihood and consequences using the School's risk matrix, according to International Organization for Standardization Standard ISO 31000:2018.

30/5/24 **Preliminary Trial 1**

In this trial, we're using a different formula composition to grow the bacteria, causing the agar to have a white/ clear gelatin instead of the typical yellow tone. First, we labelled each plate with the intended EO application name, AI, our stand in supervisor when Karen was away told us that this is extremely important to avoid confusion later on. (*Editor's note: Initially, we had plans for a negative control to serve as an aditional point of comparison, however, due to issues with the broth later on. This control was removed*)

Next, we applied 2.5ml of S.Epidermidis broth into the nutrient agar using a sterilized pippette, and swirled the liquid around until it covers the entire plate. This was replicated for every plate. We then incubated the bacterias at 30°C for 48h, the closest human temperature condition for allowed for ensuring a low risk school experiment . 48h is also the period required for S.Epidermidis to form their biofilms.

The next day, we went to check on the bacteria and noticed that only a very small strand was able to develop. It could be mistaken for scratches on the agar surface if you weren't paying attention So, we subsequently increased temperature to 37 degrees for optimising the conditions for growth, however, we have to be much more careful when handling this as the bacteria could develop to become opportunistic.

On Monday, we came back to check on the bacteria and noticed that a few more white strands has developed. However, this is still nowhere near the population we were expecting and needed to accurately undertake the experiment.

So, Karen suggested that there my have been issues with the new formula causing it to limit bacteria growth. There may have also been technical issues with the S.Epidermidis broth, so we decided that to ensure a populus and optimal bacteria colony, we would develop Agar using the trusted original formula (Oxoid CM003), and use bacteria from another grown colony to populate our dishes. This meant that the total bacteria volume was now inconsistent in each dish. However, we've decided to analyse the percentage and numerical changed in bacteria grid before and after EO application, so the initial variations would not significant compromise the data's validity.

7/6/24 Main 2 Beginning

We made altercations to the controlled variables table and the method, as described in the changes above. We've also noticed that for the previous experiment, there was small contaminations on the agar, meaning that greater measures should be taken to sanitise and sterilise the work area. So, we sterilized the metal swapper using flame from a Bunsen burner until the tip is red. Cleaned the surface using ethanol and then use the metal swapper to transfer bacteria from one grown plate to our dishes. This transfer was conducted in a grid formation, as suggested by our lab supervisor Karen. The bacteria dishes were incubated at 37°C for 48h.

Controlled Variables

Total volume of applied EO (1000µL)

Total bacteria suspension volume (supposed to be 2.5ml)

Type of EO used (Thyme, Lemongrass and Tea Tree)

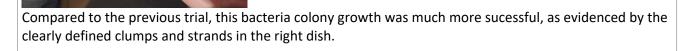
Incubation temperature (37°C)

Incubation time (48h)

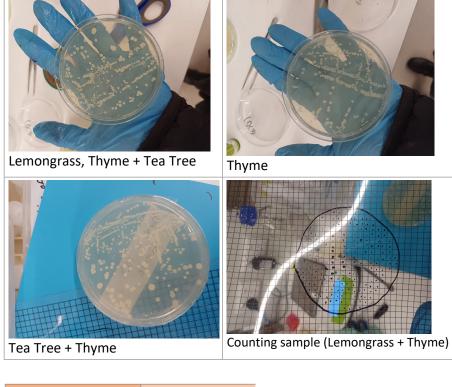
Brand of nutrient agar (Oxoid CM0003)

Method of bacterial suspension application (grid formation swapping technique)

Measurement system (Jessen grid calculation protocol)


S.Epidermidis broth solution (B2 Southern Biological) (same vile used)

Size and volume of Agar per plate (9cm diameter)


Apparatus	 8 x 90mm (diameter) Petri Dish Nutrient Agar Formula Fully grown bacteria colony 8 x Sterilized Pipette Metal Swap Bunsen Burner Heat Safety Mat Micropipette Incubator Ethanol Solution Spray Gloves Safety Goggles Face Mask Masking Tape Sharpie Jesse hemocytometer grid 1 x Lemongrass Essential Oil Bottle 1 x Thyme Essential Oil Bottle 7 x Micropipette tips 8 x Plastic Test Tube
Method:	 Prepare the nutrient agar formula using the container's instruction Equip the gloves, safety goggles and mask Label control plates and experiment plates Turn on the Bunsen Burner to a closed flame and hold the metal swap over the heat to sterilize. Remove once the metal tip is red. Spray the ethanol solution on the workbench to sterilize and prevent experiment contamination Swipe the metal swap from the grown colony and draw the bacter into the agar plate in a grid formation until all the broth is transffered.
	Swapping motion

7. Repeat steps 6 to 9 until all 8 plates are distributed with bacteria

	 8. Incubate the plates at 37°C for 48h 9. After 48h, remove the plates from the incubator, the biofilm and colony should be fully formed. Then, use the Jesse hemocytometer grid to count the bacteria amount for each plate and record this in an excel sheet under the intended oil application. 10. For the singular oil controls, use the micropipette to transfer 1000 μL of each EO into their marked plate and swirl the liquid until it covers the entire plate's area. 11. For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid to mix and until it covers the entire plate's area. 12. For the triple combinations, use the micropipette to transfer 333 μL of each EO types into their marked plate, swirl the liquid to mix and until it covers the entire plate's area. 13. Incubate the plates at 37°C for 48h 14. After 48h, remove the plate from the incubator and use the Jesse hemocytometer grid to count the bacteria amount for each plate, repeat this process 3 times. Record this in an excel sheet under the oil's application and calculate the average count.
1/6/24	

ЕО Туре	Grid Count (Before)
Thyme (Control)	123
Tea Tree (Control)	155
Lemongrass (Control)	176
Lemongrass + Thyme + Tea Tree	158
Thyme + Tea Tree	139
Lemongrass + Thyme	160
Lemongrass + Tea Tree	185

We then counted the bacteria amount in each plate using the grid as a metric, and then inputted those details into the table as seen above.

	Next, we used a micropipette to apply extremely precise amounts of EOs, into their designated bacteria colony. For the binary combinations, it was 500 μ L of each EO, for the singular oil controls it was 1000 μ L of each EO types, for the triple combinations it was 333 μ L of each EO types. We then swirled to combine the essential oils and ensured that it covered the entire bacteria colony's surface area.
13/6/24	Today we observed the outcome from the second trial. Below are our observations for each E/o and its effectiveness.
	Observations : Similar to the controls, any combination with lemongrass demostrated a colour change. Additionally, both the Thyme + Lemongrass combination and the Tea Tree + Lemongrass combinations had the least noticeable volume change. Unlike the results with Lemongrass, combinations with the inclusion of Tea Tree proved effective. Tea tree individually showcased drastic density changes. However, it is worth noting that the changes included with lemongrass application in this trial is more effective than the last, and that EOs decreases the size of the bacteria strands instead of wiping out clusters entirely.
	Observations: By visual analysis, Lemongrass had the most distinct change in the bacteria's colour composition, which is attributed to the EO's orange hue compared to the other oil's clear ones. Additionally, although the image is blurry, Tea Tree oil demostrated the most drastic visual change, with the majority of its bacteria clearing, whereas visually, thyme and lemongrass only demostrated very minor change.
	To compare the Eos's effectiveness, we used the Hemocytometer grid sheets to count each agar plate three times to ensure an accurate probable average, taking into account human errors.
	After counting the bacteria growth using the grid sheets, we thought about other ways that will help us collect accurate results and realised that using a microscope is a great way to count bacteria but also take a closer look at the bacteria's behaviour.
	Please note that the pictures attached below are taken 72 hours after the allocated 48hr incubation period. However the subsequent bacteria count is still accurate as it was conducted on the day the agar plates taken out.
	Image: Non-StateImage: Non-State <td< td=""></td<>

	Fhyme + Tea Tree
	Tea Tree Image: Tea Tree Image: Thyme + Lemongrass + Tea Tree Image: Thyme + Lemongrass + Tea Tree Image: Thyme + Lemongrass + Tea Tree
	Eemongrass + Thyme
14/6/24	Objective: To investigate the effectiveness of essential oils in reducing bacterial colonies on agar plates, and to evaluate potential improvements for EO application.
	 Method Prepare workspace by spraying ethanol spray on workbench to sterilise. Ensure the appropriate PPE is used. Using a ruler and sharpie draw four quadrants on the agar plates' lids to use a guide for oil placement. Use a micropipette and set the volume indicator to the following: For the singular oil controls, use the micropipette to transfer 1000 μL of each EO into their marked plate and swirl the liquid until it covers the entire plate's area. For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid For the binary combinations, use the micropipette to transfer 500 μL of each EO types into their marked plate, swirl the liquid

to mix and until it covers the entire plate's area.

- For the triple combinations, use the micropipette to transfer 333 μL of each EO types into their marked plate, swirl the liquid to mix and until it covers the entire plate's area.
- 5. Eject the Eos into the designated quadrant, and give it time to fully absorb into the agar plate.
- 6. Gently apply the bacterial broth using plastic pipette vertically and then horizontally to ensure an even spread.
- 7. Close the lid and wrap it using thin glad wrap to secure the lid and protect the bacteria from any external contamination.
- 8. Place the agar plates into the incubator for 48 hours and set the temperature to 37°C to stimulate human body temperature
- 9. Take the agar out and count the bacteria colony using the Jessen hemocytometer grid. Log this into a table and compare data to Trial 2's bacterial reduction.

Today we worked on our third trial. We thought about different ways that can enhance the EO/s effectiveness by ejecting the EO/s into the agar plate before the bacteria. When the EO/s was initially inputted, the plan, as discussed was to allow the liquid to fully soak into the agar composition. In the scenario, the agar represents the human skin condition that is lathered with EO/s before the bacteria could become viral. This is to asses its effectiveness before excess bacterial development vs the previous trial, which studies the EO/s effectiveness after virulence.

Bacteria in 2.5ml applied to each square

17/6/24	applicatior practical si S.Epidermi trial was to	ed, the idea was to compare bacteria development with intial EO/s a n after the bacteria has developed virulence. However, the bacteria r ince we did not leave enough time for EO/s to fulling soak into the age idis broth, meaning that it mixed with the oil and never contacted the o be conducted, we would first allow 12h for the EO/s to fully absorb the bacterial broth. Unfortunately, due to these issues, this study can	ever cultivated in this ar before putting in e agar surface. If a second into the agar surface before
18/6/24	Objectives	:	
	Method:		
	Method:	 Prepare the nutrient agar formula using the container's instructions Equip the gloves, safety goggles and mask Label 1 plate as a control plate and 1 plate as the experiment plate Divide the control plate into 4 equal quadrants. Mark each as (Thyme (3), Lemongrass (2), Tea Tree (3)) Divide the experiment plate into 5 equal quadrants. Mark each as combinations of the represented EO number Using a pipette, collect 2.5ml from the S.Epidermidis broth and insert this into a plastic test tube Turn on the Bunsen Burner to a closed flame and hold the metal swap over the heat to sterilize. Remove once the metal tip is red. Spray the ethanol solution on the workbench to sterilize and prevent experiment contamination Transfer the broth onto the plate in the same method as described. Repeat steps 6 to 9 until all 8 plates are distributed with bacteria Incubate the plates at 37°C for 48h After 48h, remove the plates from the incubator, the biofilm and colony should be fully formed. Select a bacteria dollop from each quadrant and measure using caliper. For the singular oil controls, use the micropipette to transfer 200 µL of each EO into 6 pieces of filtration paper. Place 1 piece of filtration paper on the selected dollop in its individual quadrant. For the combinations, use the micropipette to transfer 33.3 µL of each type into the plastic test tubes and shake to combine. 	

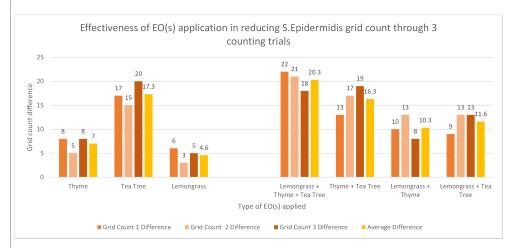
	Place 1 combin 15. Incubat 16. After 48 caliper an exce By using filter papers, into a bandage first ra papers to standardise th	ther than just applying i he application area and er ter the application EO/s w	on the selected dol 48h m the incubator and size underneath. Re pplication. a guaze and assess t t directly onto the sl usure consistent dosin	lop in each d use the ecord this in he EO/s' effe kin. 1x1 cm g g for more acc	ectiveness if it was absorbed rids were drawn onto filter curate comparison of e incubator which is set to 37°
	Each EO used is represe a number	ented by	Group	ntrol Group	
20/4/24	The combos of Thyme difference of 18,21 an observation was less s visual observation also that showcases the tre Count 1:	+ Tea Tree + Lemongras d 22 reduction counts. A tatistically effective, at a proved this statistics. T ends clearly.	ss was the most effe Aditionally, the lemo a reduction different The next step would	ective, having ongrass contr ce of only 3, be to synthe	s and calculation. As seen, the highest average ol, as described in the above 6 and 5 grid counts. Our size these data into graphs
	ЕО Туре	Grid Count (Before)			
	Thyme	123	115	8	
	Tea Tree	155	138	17	

Tea Tree	155	138	17
Lemongrass	176	170	6
All 3	158	136	22
Thyme + Tea Tree	139	126	13
Lemongrass + Thyme	160	150	10
Lemongrass + Tea Tree	185	176	9

Count 2:

ЕО Туре	Grid Count (Before)	Grid Count (After)	Differenc e
Thyme	123	118	5
Tea Tree	155	140	15
Lemongrass	176	173	3
All 3	158	137	21
Thyme + Tea Tree	139	122	17
Lemongrass + Thyme	160	147	13
Lemongrass + Tea Tree	185	172	13
	105	172	15
Count 3:		 	
	Grid Count (Before)	 	
Count 3: EO Type	Grid Count (Before)	Grid Count (After)	Differenc
Count 3: EO Type Thyme	Grid Count (Before) 123	Grid Count (After)	Differenc 8
Count 3: EO Type Thyme Tea Tree	Grid Count (Before) 123 155	Grid Count (After) 115 135	Differenc 8 20
Count 3: EO Type Thyme Tea Tree Lemongrass	Grid Count (Before) 123 155 176	Grid Count (After) 115 135 171	Differenc 8 20 5
Count 3: EO Type Thyme Tea Tree Lemongrass All 3	Grid Count (Before) 123 155 176 158	Grid Count (After) 115 135 171 140	Differenc 8 20 5 18

21/4/24 From the initial observation, Tea Tree infused with Thyme was the most effective in reducing bacteria growth, in comparison to the other statistic from Trial 2, which resulted in Thyme + Tea Tree + Lemongrass being the most potent bacterial blend in reducing S.Epidermidis development, this showcases that Thyme and Tea Tree is highly effective at a minimum concerntration model. Similarly, Lemongrass infusions was also the least potent in this minimum concerntration enviroment. These observations, however, will not be logged and utilized in the report since the nature of the bacteria strand structure (*view bellow*), in that grid formation mean that it was not possible to measure the diameter of intial bacteria habitation. Due to the tight time frame until the deadline, we were not able to replicate the experiments with these criterias considered.



22/4/24 Today, we placed the collated data into more relevant tables and graphs for better visualization, allowing us to comprehensively analyse the antimicrobial effects of the different EO properties and generate potential conclusion.

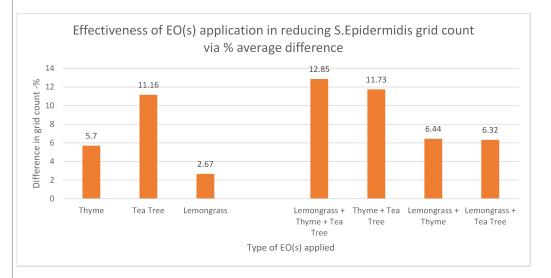
Table 2: A table showing the average difference in S.Epidermidis colony before and after applying the EOtreatments, averaged over the three counting times.

ЕО Туре	Grid Count 1 Difference	Grid Count 2 Difference	Grid Count 3 Difference	Average Difference
Thyme (Control)	8	5	8	7
Tea Tree (Control)	17	15	20	17.3
Lemongrass (Control)	6	3	5	4.6
Lemongrass + Thyme + Tea Tree	22	21	18	20.3
Thyme + Tea Tree	13	17	19	16.3
Lemongrass + Thyme	10	13	8	10.3
Lemongrass + Tea Tree	9	13	13	11.6

Graph 1: A graph showcasing the average numerical difference in bacteria colony grid count after the application the individual EOs and EO combinations over three different counts.

Key Findings:

- The combination of Lemongrass, Tea Tree, and Thyme was the most statistically effective oil combination.
- This combination had the highest percentage decrease in bacteria and the highest average numerical decrease.
- Lemongrass has significantly lower individual and complementary effects compared to Thyme and Tea Tree. This may be due to its singular capability to reduce biofilm without disrupting enzyme functions like Thyme and Tea Tree.


Table 3: Average - A table showing the percentage difference in S.Epidermidis colony before and after

applying the EO treatment, calculated through the average difference.

• We used a percentage calculator to gage the percentage decrease or increase, enhancing points of analysis.

What is the percentage increase	e/decrease			
from 118 to 123	?		CALCULATE	4.23728813 9
ЕО Туре	Average Count	Average Difference	Average % Difference	
Thyme (Control)	116	7	5.7	
Tea Tree (Control)	137.7	17.3	11.16	
Lemongrass (Control)	171.3	4.7	2.67	
Lemongrass + Thyme + Tea Tree	137.7	20.3	12.85	
Thyme + Tea Tree	122.7	16.3	11.73	
Lemongrass + Thyme	149.7	10.3	6.44	
Lemongrass + Tea Tree	173.3	11.7	6.32	

Graph 2: A graph showcasing the average % difference in bacteria colony grid count after the application of different individual EOs and EO combinations:

- Lemongrass, thyme and tea tree EOs together were the most effective, reducing the bacterial volume through the grid count metric by 12.85%.
- Thyme + Tea were the second most effective combination, showcasing that thymol, carvacrol and terpinen-4-ol's similar mechanism of infiltrating the biofilm and production enzyme was especially effective synergistically.
- Tea Tree alone was the 3rd most effective, at a reduction rate of 11.16%, this is due to their comprehensive capabilities to infiltrate the biofilm, disrupt enzyme functions and also diminish

	• \ c • L 1 t r i	Subsequent bacteria development from persisting cells. With singular application, Thyme and Lemongrass was less effective at reducing bacteria colony at only 5.7% (Thyme) and 2,67% (Lemongrass), than them in synergestic combination, with a higher decreasement of 6.44%. Lemongrass has significantly lower individual and complementary effects compared to Thyme and Tea Tree, with an average decreasement of only 2.67% for its individual application. In combination, this was the least effective oil with a statistic of 6.44% reduction in Thyme + Lemongrass and a 6.32% reduction in Tea Tree, which was still more effective than lemongrass in itself. In comparison, Tea Tree + Thyme was more effective, leading to the potential link between Lemongrass and a decrease in synergestic effectiveness. As a total, however, EOs in combination was more effective in inhibiting 5.Epidermidis colony.
23/4/24	and m	, we started compiling all the relevant data into our final report. We managed to get the Introduction ethods completed. However, continuous work over the next few days would be critical for getting one on time as we are very tight to the deadline.
25/4/24	also w	anaged to complete the report and are now editing to enhance the communications criteria while orking on finishing up the bibliography and citation aspects. ns? Staphylococcus Epidemidis is a typically non-pathogenic, innocuous and common bacterium found on human skin. However, its ubiquitous presence also allows for contamination of indivelling medical devices such as catheters, internal tubes, and prosthetics, prompting the bacteria to become opportunistic upon enter into the human body. "It is now the most frequent couse of nosocomial skin infections," (Otto, 2009). Although not viral ir nature, 8, epidermidis is difficult to treat since it forms biolifins, which enteria's survivability against several antibiotics. Essential olis (E(0)) are (have) antimicrobial properties, with evidence proving their potency (potentials might be a better word but idk) against S. epidermis. The experiment builds upon this understanding to investigate the effectiveness of combining the three most statistically cohesive essential of (by my, tea tree and lemongrass) in observing its anti-bacterial scope (hmm synonyms?) against S. epidermis by comparison to the EO: individually.
	Background	The mechanisms in which S. Epidemidis inhibits indexiling medical devices is a four steps process, consisting of aubstances (EPS) which is a major viscence (too complex?) attribute. First, the bacteria's abundance on the skin adheres to an abloic foreign body or biomaterials, (<i>eg. plastic</i> prosthetic): Hough surface proteins called adhesis, which anchors the bacteria's call wall to the implant's extra cellular matrix components such as fibroneetin, collager, and fibringen (Foster, 2020). The Polysaccharide intercellular Adheein (PIA/PIAdO) is then synthesized in the accumulation stage, facilitating the formation of microations and the cellular basis or just" that binds proteins and components within the biofilm together, protecting the bacteria's ustima (Micck et al., 2021). In maturation, the formation of Extracellular polyme's tractationa (PIA/PIAd, PIA/PIAd, PIA/PIA/PIA/PIA/PIA/PIA/PIA/PIA/PIA/PIA/

Your work + Add Reference	^{3 n} 开	Notes	ave your work. d style	
Refere		Edit Move to project		
Alu'datt, and Raws <i>Propertie</i> ScienceD		Duplicate to project Copy bibliography entry Copy in-text citation	ph, S., Al-Mahasneh, M.A., Tranchant, C.C. cal, Nutraceutical and Therapeutic Spearmint, and Rosemary. [online]	
https://ww Ariyanto, 1	0	Color >	B9780128146255000145. arakat Melalui Pelatihan Pembuatan	
Minyak At	ri e 🔟	Delete gate.net/ngure/ine-structures-	ang, [online] Available at: oi-the-flavonoids-and-phenolic-compounds-	
citratus_fi %2C%20a	d%20anti% 10N: > Acc	%2Dcancer. [Accessed 25 Jun	contains%20essential%20oils%20such,insect 2024]. ! Website name ★	
Microbio	gy, [online	e] 5. doi:https://doi.org/10.3389	D/fcimb.2015.00014. I ssue number ×	
Cleveland	Clinic (202	22). Staph Infection (Staphyloc	occus Infection). [online] Cleveland Clinic.	

OSA RISK ASSESSMENT FORM

for all entries in (\checkmark) \Box Models & Inventions and \Box Scientific Inquiry

This must be included with your report, log book or entry. One form per entry.

STUDENT(S) NAME: Linh Bui and Maiar Elkhouly

______ID: 0024-020

SCHOOL: Adelaide Botanic High School

Activity: Give a brief outline of what you are planning to do.

We are planning on growing the S.Epidermidis bacteria and using it to measure the effects of individual essential oils vs combination of essential oils, which are Thyme, Lemongrass and Tea Tree. The bacteria will be incubated at 37°C at periods of 48h for the biofilm to fully form.

Are there possible risks? Consider the following:

- Chemical risks: Are you using chemicals? If so, check with your teacher that any chemicals to be used are on the approved list for schools. Check the safety requirements for their use, such as eye protection and eyewash facilities, availability of running water, use of gloves, a well-ventilated area or fume cupboard.
- Thermal risks: Are you heating things? Could you be burnt?
- · Biological risks: Are you working with micro-organisms such as mould and bacteria?
- Sharps risks: Are you cutting things, and is there a risk of injury from sharp objects?
- Electrical risks: Are you using mains (240 volt) electricity? How will you make sure that this is safe? Could you use a battery instead?
- Radiation risks: Does your entry use potentially harmful radiation such as UV or lasers?
- Other hazards.

Also, if you are using other people as subjects in an investigation you must get them to sign a note consenting to be part of your experiment.

Risks	How I will control/manage the risk
Listed Below	

(Attach another sheet if needed.)

Risk Assessment indicates that this activity can be safely carried out

RISK ASSESSMENT COMPLETED BY (student name(s)): Linh Bui and Maiar Elkhouly

SIGNATURE(S): <u>L.B</u> M.E

By ticking this box, I/we state that my/our project adheres to the listed criteria for this Category.

TEACHER'S NAME: Karen Bang

SIGNATURE: _____

COT

Risk	Why?	Controlling Risk
Bunsen Burner (Thermal Risk)	This is an ignition source, with temperature ranging above 1000°C, meaning that fatal burns and injury can occur with improper handling. Risks to other equipment and the facility also presents as the heat can ignite flammable materials and cause subsequent damage.	 Ensure that in use, the Bunsen Burner is only activated on a stable and heat safe mat/ surface. Keep all materials far away from the open flame, especially combustible substances and volatile chemicals. Use flame resistant tools to handle items near the flame and keep a safe distant. Never leave the equipment unattended. Equip the required eye ware and PPE, ensure that long hair is tied up. Have a fire extinguisher readily available in case of an emergency.
Incubator (Electrical Risk) (Biological Risks)	This is an electrical device, meaning that malfunctioning components and faulty wires could cause electrical shocks and overheating, leading to potential fire-hazards. Aditionally, bio- hazard also presents as the incubator's temperature can develop bacteria culture, meaning that potential contamination could spread with improper handing and monitoring.	 Ensure that it is recently inspected and maintained for preventing technical damage. Keep in a dry enviroment. Always properly seal petri dishes with bacteria culture to prevent spread into the external enviroment Regularly disinfect the inside of the incubator.

S.Epidermidis	The bacteria, once entered inside the human body can become opportunistic, leading to potential severe and viral infections.	 Ensure to equip all the neccesary PPE (gloves, safety gogglesetc) in contact with the bacteria. Also check and bandage any open wounds. Regularly disinfect surfaces housing the bacteria (eg: lab counter, incubator) to kill any bacterial residuals. Dispose bacteria contaminated equipment (eg: pipette) in biohazard specified container to prevent spread. Only handle and extract bacteria broth with a certified supervisor present. Only use commercially obtained pure nonpathogenic strains.
Agar Plate	Agar is harmless, but bacteria or fungi grown on agar may be pathogenic, causing bio-safety hazards.	 Knowledge of microbiology and aseptic techniques is required to minimise risks to people Dispose agar in bio- hazard specified container to regulate contamination. Regularly monitor agar infiltrated bacteria temperature and enviroment. Always equip the required PPE when making agar or

		using it grow bacteria broth. Always disinfect the cultivation area.
Essential Oil (Chemical Risk)	Eos are volatile organic compounds (VOCs), meaning that they have high vapors at room temperature and can cause irritation and health issues for allergic individuals through inhalation, eye contact or skin contact. Even in small quantities, ingestion of active chemicals inside EO can be fatal	 Always equip the required PPE when in contact with the chemical (eg: safety goggles, gloves, face masketc) Locate a nearby eye water fountain in case of irritation. Always disinfect the area after a spillage, use absorbable materials and store the EOs in the labelled adequate conditions.