

Prize Winner

Scientific Inquiry

Year 9-10

Kyra Huang Benita Wu

Seymour College

Department of Defence

Effects of

Acidification on the

Surface Tension of

Water

By Benita and Kyra

Oliphant Scientific Inquiry QUESTIONING AND PREDICTING

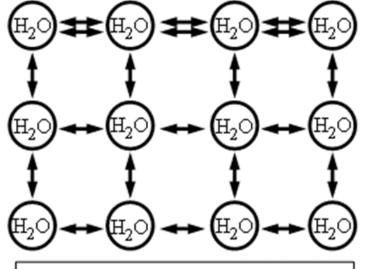
BY BENITA WU AND KYRA HUANG

INTRODUCTION

The surface tension of liquids is frequently utilized within science and the environment. Water (H2O) has the second highest surface tension of known liquids of 72mN/m (Laurén, 2023). This high surface tension has supported ecosystems by aiding insects and raise the xylem tissues of plants within bodies of water, making surface tension of water a crucial part of the environment (Georgia Tech Biological Sciences, 2024). Due to issues with climate change and ocean acidification, the balance and properties of ocean water is altering, causing changes within the surface tension (Union of Concerned Scientists, 2019). This raised the question of how increased acidity of water affects its surface tension and modifies the impact it has on the environment. This investigation explored the affect acidification has in a body of water.

AIM

The aim of the experiment was to determine the impact of acidification on the surface tension of water in relation to ocean acidification.


HYPOTHESIS

If the acidity of the solution increases, the surface tension will decrease due to molecular interactions.

BACKGROUND INFORMATION SURFACE TENSION

Surface tension is the chemical property of the surface of liquids and their ability to resist external force (Water Science School, 2019). The surface tension of liquids is caused by the attraction of particles on the surface layer and is determined by intermolecular forces within the fluids. The properties of liquids make it difficult to move a substance through liquid due to the strong attractive forces of the molecules near the surface, as shown in Figure 1(Laurén, 2023). Surface tension is only directly measurable for liquids (Kibron, 2022). SURFACE

Surface tension—molecules at the surface form stronger bonds

Figure 1: A diagram of the surface of liquid molecules. Surface Tension and Water | U.S. Geological Survey (usgs.gov)

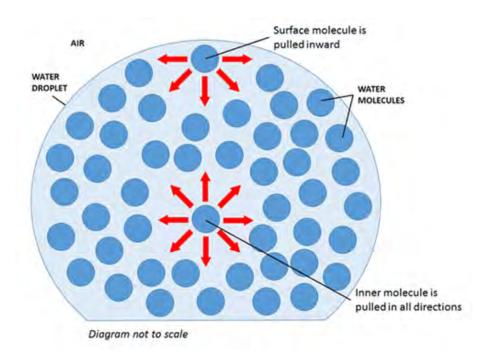


Figure 2: A diagram of the intermolecular forces a water droplet. <u>Measuring Surface Tension of Water with a Penny | Science</u> <u>Project (sciencebuddies.org)</u>

Oliphant Scientific Inquiry QUESTIONING AND PREDICTING

BY BENITA WU AND KYRA HUANG

BACKGROUND INFORMATION

WATER AND HYDROGEN BONDING

Hydrogen bonding is an intermolecular force that forms a type of dipole-dipole attraction when a hydrogen atom is bonded to an electronegative atom. It is the strongest type of intermolecular force and generates high surface tensions (Byjus, 2022). Water is able to form 4 hydrogen bonds, causing it to have an extremely high surface tension, as seen in figure 1. On the surface of water, molecules only interact with molecules underneath them and the water molecules experience interactions in all directions, causing the net force of the molecules to face inwards, which is illustrated in figure 2 (University of Hawaii, 2024). Due to their hydrogen bonds, water molecules are attracted to each other, resulting in strong intermolecular forces in the surface causing molecules to contract and resist against being stretched or broken, as shown in figure 2 (Laurén, 2023).

ACIDS

Acids are chemical substances which contain hydrogen ions and are capable of donating a proton (Byjus, 2018). They have a lower pH and density compared to water, and exhibits 3 intermolecular forces: London dispersion forces, Dipole-Dipole forces and hydrogen bonding (Shah et al., 2022). When reacted to bases, they form salts as the cations of the base is combined with anions of the acid. Acids can be identified by observing the number of hydrogens in each substance before and after a reaction. The decrease of hydrogens indicates that the substance is an acid as it donates hydrogen ions (Byjus, 2018).

Vinegar is acetic acid which is a carboxylic acid with the chemical formula of CH₃COOH, as shown in figure 3. Acetic acid, also known as ethanoic acid has a carboxylic acid functional group which can produce hydrogen bonding and dipole-dipole interactions. Like water, it is a polar substance causing its molecules to attract with water molecules when forming a solution (Extramarks, 2022). This creates a homogenous mixture where the water molecules are dissolved into the vinegar molecules (Toppr, 2020).

Figure 3: A diagram of the chemical composition of vinegar. Chemical Composition of Vinegar (thoughtco.com) Lemon juice has the chemical formula of C6H8O7, consisting of water, citric acid and carboxylic acid, as shown in figure 4 (AL-Jabri, 2018). Lemon juice has the density of approximately 1.66g/cm³. When it is added to water, the acid dissociates into charged cations and anions, forming a homogonous mixture with water (Vedantu, 2020).

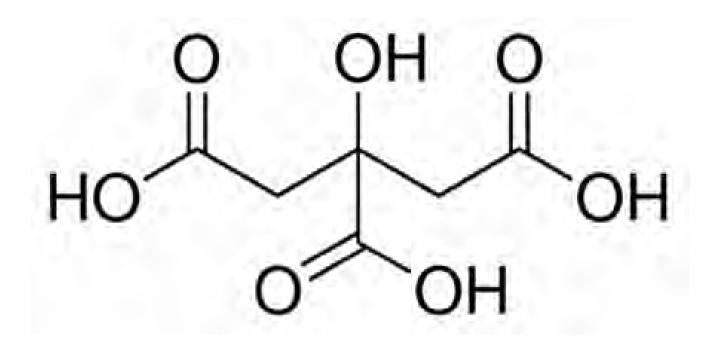


Figure 4: A diagram of the chemical composition of lemon juice. https://www.worldofmolecules.com/acid-basemolecules/citric-acid.html

PLANNING AND PREDICTING

BY BENITA WU AND KYRA HUANG

CHOICE OF METHOD

This experiment was done in the same environment, ensuring a tighter control of variables, and is easily repeatable, which makes it easier to examine the effects of the independent variable on the dependent variable.

This investigation uses the capillary action to find the surface tension of the solutions. Capillary action utilizes adhesion and cohesive forces which create the strong forces between liquid molecules and cause liquids to stick to solid surfaces, resulting in the rise of the liquid up the straw. The height the liquid rises is used to calculate the surface tension with the formula S = phga/2, where g stands for acceleration due to gravity, h is the height the liquid rises above water, a is the radius of the thin tube, p is the density of the liquid and S is the surface tension (Ruff, 2022).

Capillary Action Illustrated

WHY IS THIS A FAIR TEST?

To ensure a fair test, there must be one variable that is changed (independent variable), one that is measured (dependent variable), and all other variables kept the same (control variable), allowing the experiment to determine the affect of the independent variable on the dependent variable. The variables of this experiment are shown in Table 1. The experiment was also repeated twice, with the average measure taken, to increase the accuracy and reliability of the practical. To maintain the credibility of this experiment, potential biases (systematic and random) were avoided.

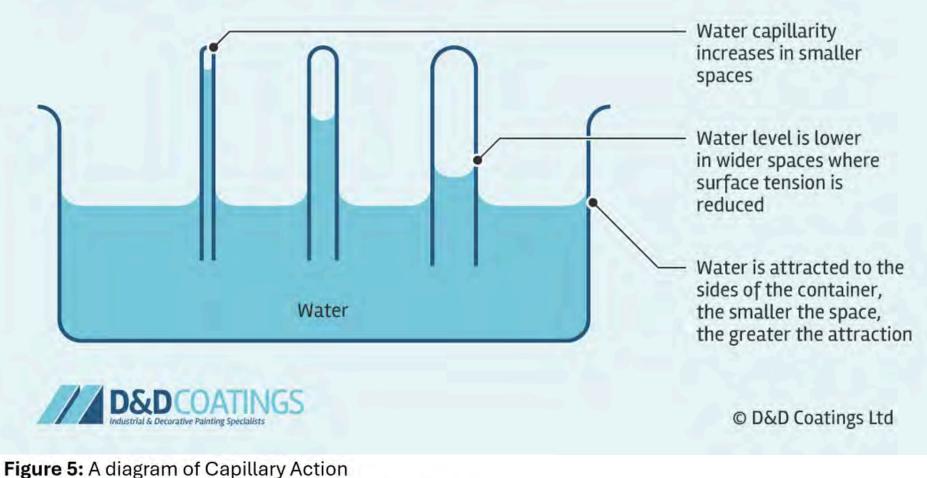
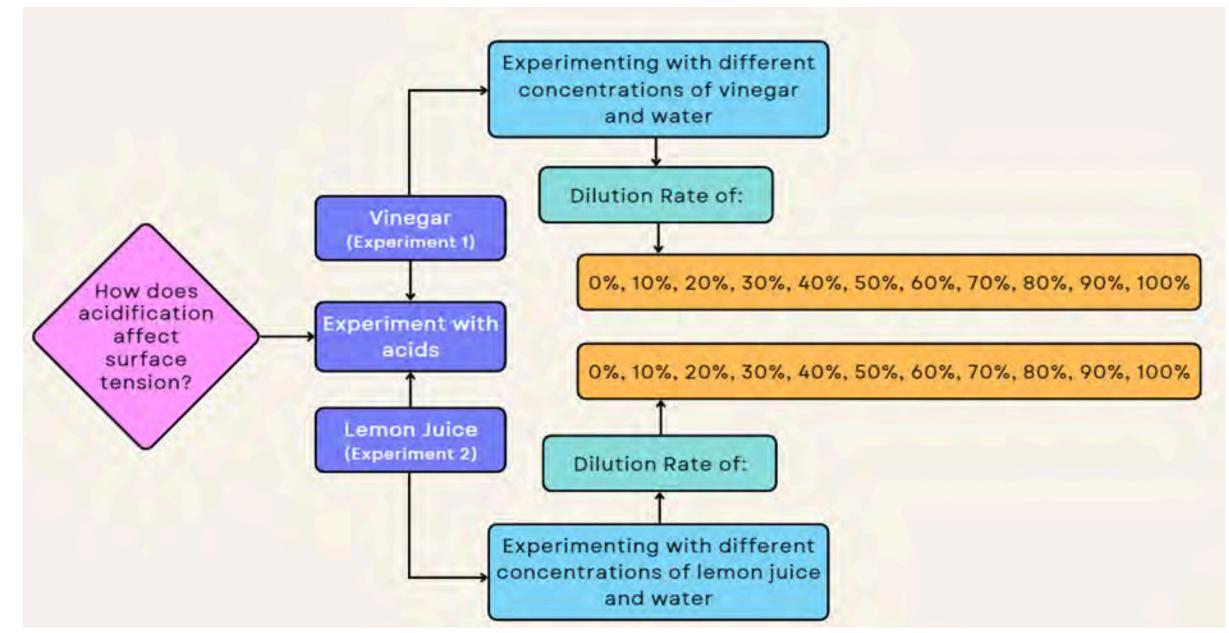


Figure 5: A diagram of Capillary Action https://www.ddcoatings.co.uk/3213/capillary-action


Table 1: Variables

Independent Variable	The concentration of acid in the solution (%)	
Dependent Variable	Surface tension of solutions (J/m ²)	
Controlled Variables	Type of Water	
	Type of vinegar & citric acid	
	Total amount of liquid (L)	
	Temperature of liquid	
	Person measuring and taking the results	
	Ruler used to measure	
	Environment used for experiment	

PLANNING AND PREDICTING

BY BENITA WU AND KYRA HUANG

EXPERIMENT FLOWCHART

METHOD

1.150mL of tap water was added to the cup.

2. Vinegar was added to the water according to calculations for the dilution level.

3. The plastic straw was put vertically into the centre of the cup.

4.A ruler was used to measure the height of the water raised above the surface of the glass. 5.The glass, ruler and straw were thoroughly rinsed.

6.Steps 1 to 4 were repeated for each dilution level, and the calculations below were used. 7.Steps 1 to 5 were repeated for lemon juice.

Amount of Water (mL)	Dilution Level	Calculations	Amount of Acids (mL)
150	0%	0*150	0
135	10%	0.1*150	15
120	20%	0.2*150	30
105	30%	0.3*150	45
90	40%	0.4*150	60
75	50%	0.5*150	75
60	60%	0.6*150	90
45	70%	0.7*150	105
30	80%	0.8*150	120
15	90%	0.9*150	135
0	100%	1*150	150

Table 2: Dilution of vinegar and lemon juice calculations

EQUIPMENT AND MATERIALS

BY BENITA WU AND KYRA HUANG

MATERIALS

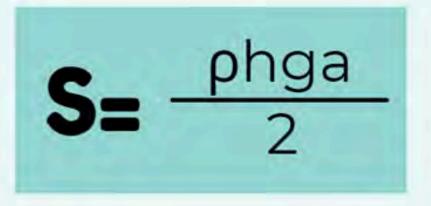
- Vinegar x675mL
- Lemon Juice x675mL
- Water x1.35L
- Ruler x1
- Straw x1 (0.7cm in diameter)
- Spoon (for stirring) x1
- Scale (for weighing) x1
- Glass Cup x1

• Disposable Syringe x1

Figure 6: Photos showing the materials used during the experiment.

POSSIBLE RISKS

Table 3: Risk audit

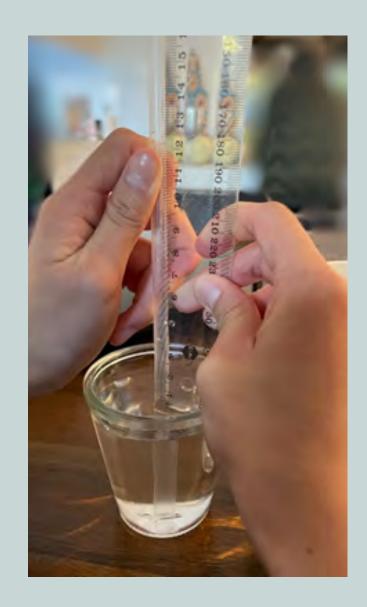

Possible Risks	Likelihood of risk	Measures of risk prevention
Reckless handling of vinegar	Medium Risk	Measuring small amounts of
could cause accidental		vinegar at a time and making
inhalation or eye injuries.		sure all bottles are labelled.
Liquid spillage could cause a	High Risk	Ensure all spillages are
tripping hazard		cleaned immediately.
Glass cups breaking from	Medium Risk	Ensure all glass materials are
inattentive handling, causing		kept within the middle of the
glass shards scattered around		table.
experiment.		
Injuries from reckless actions	Low Risk	Keeping distractions away
with materials.		whilst focusing on experiment
		and ensure the safe handling of
		materials.

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

FORMULA

FORMULA FOR SURFACE TENSION



 $\rho = \text{density} (\text{kg/m^3})$

h = height above water (m)

g = acceleration due to gravity (9.8m/s^2)

a = radius (m)

RESULTS - VINEGAR

Note: All figures are rounded to 2 decimal places other than for surface tension due to the small range of data, where is it rounded to 3 significant figures for comparison.

Table 4: Height above vinegar dilutions trial 1, trial 2, and average

Concentration of Vinegar	Height above water	Height above water	Average Height
	(mm) Trial 1	(mm) Trial 2	(mm)
0%	5.00	4.90	4.95
10%	4.50	4.20	4.35
20%	4.10	3.80	3.95
30%	3.80	3.50	3.65
40%	3.20	3.10	3.15
50%	3.00	3.00	3.00
60%	2.50	2.80	2.65
70%	2.20	2.30	2.25
80%	1.90	2.00	1.95
90%	1.40	1.30	1.35
100%	1.00	1.00	1.00

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - VINEGAR (CONTINUED)

Table 5: Average surface tension calculations for vinegar

Concentration	Density (kg/ m³)	Height (m)	Acceleration (ms²)	Radius (m)
0%	≈997	0.00495	9.8	0.007
10%	≈998	0.00435	9.8	0.007
20%	≈999	0.00395	9.8	0.007
30%	≈1000	0.00365	9.8	0.007
40%	≈1001	0.00315	9.8	0.007
50%	≈1002	0.003	9.8	0.007
60%	≈1003	0.00265	9.8	0.007
70%	≈1004	0.00225	9.8	0.007
80%	≈1005	0.00195	9.8	0.007
90%	≈1006	0.00135	9.8	0.007
100%	≈1007	0.001	9.8	0.007

Table 6: Finding average surface tension of solutions: rounded to 3 significant figures

Concentration	Formula	Surface tension (J/m ²)
0%	997×0.00495×9.8×0.007	≈0.169
	2	
10%	998×0.00435×9.8×0.007	≈0.149
	2	
20%	999×0.00395×9.8×0.007	≈0.135
	2	
30%	1000×0.00365×9.8×0.007	≈0.125
	2	
40%	1001×0.00315×9.8×0.007	≈0.108
	2	
50%	1002×0.003×9.8×0.007	≈0.103
	2	
60%	1003×0.00265×9.8×0.007	≈0.091
	2	
70%	1004×0.00225×9.8×0.007	≈0.077
	2	
80%	1005×0.00195×9.8×0.007	≈0.067
	2	
90%	1006×0.00135×9.8×0.007	≈0.047
	2	
100%	1007×0.001×9.8×0.007	≈0.035
	2	

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - VINEGAR (CONTINUED)

Table 7: Trial 1 surface tension calculations for vinegar

Concentration	Formula	Surface tension (J/m ²)
0%	997×0.005×9.8×0.007	≈0.171
	2	
10%	998×0.0045×9.8×0.007	≈0.154
	2	
20%	999×0.0041×9.8×0.007	≈0.140
	2	
30%	1000×0.0038×9.8×0.007	≈0.130
	2	
40%	1001×0.0032×9.8×0.007	≈0.110
	2	
50%	1002×0.003×9.8×0.007	≈0.103
	2	
60%	1003×0.0025×9.8×0.007	≈0.086
	2	
70%	1004×0.0022×9.8×0.007	≈0.076
	2	
80%	1005×0.0019×9.8×0.007	≈0.065
	2	
90%	1006×0.0014×9.8×0.007	≈0.048
	2	
100%	1007×0.001×9.8×0.007	≈0.035
	2	

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - VINEGAR (CONTINUED)

Table 8: Trial 2 surface tension calculations for vinegar

Concentration	Formula	Surface tension (J/m ²)
0%	997×0.0049×9.8×0.007	≈0.168
	2	
10%	998×0.0042×9.8×0.007	≈0.144
	2	
20%	999×0.0038×9.8×0.007	≈0.130
	2	
30%	1000×0.0035×9.8×0.007	≈0.120
	2	
40%	1001×0.0031×9.8×0.007	≈0.106
	2	
50%	1002×0.003×9.8×0.007	≈0.103
	2	
60%	1003×0.0028×9.8×0.007	≈0.096
	2	
70%	1004×0.0023×9.8×0.007	≈0.079
	2	
80%	1005×0.002×9.8×0.007	≈0.069
	2	
90%	1006×0.0013×9.8×0.007	≈0.045
	2	
100%	1007×0.001×9.8×0.007	≈0.035
	2	

Table 9: Surface tension of diluted vinegar from both trials and average

Concentration of Vinegar	Trial 1 (J/m²)	Trial 2 (J/m²)	Average (J/m²)
0%	≈0.171	≈0.168	≈0.169
10%	≈0.154	≈0.144	≈0.149
20%	≈0.140	≈0.130	≈0.135
30%	≈0.130	≈0.120	≈0.125
40%	≈0.110	≈0.106	≈0.108
50%	≈0.103	≈0.103	≈0.103
60%	≈0.086	≈0.096	≈0.091
70%	≈0.076	≈0.079	≈0.077
80%	≈0.065	≈0.069	≈0.067
90%	≈0.048	≈0.045	≈0.047
100%	≈0.035	≈0.035	≈0.035

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - LEMON JUICE

Table 10: Height above lemon juice dilutions trial 1, trial 2, and average

Concentration of Lemon	Height above water	Height above water	Average Height
Juice	(mm) Trial 1	(mm) Trial 2	(mm)
0%	5.00	5.00	5.00
10%	4.00	3.90	3.95
20%	2.50	2.30	2.40
30%	2.10	2.20	2.15
40%	2.00	2.10	2.05
50%	2.00	2.00	2.00
60%	1.90	1.90	1.90
70%	1.70	1.80	1.75
80%	1.30	1.50	1.40
90%	1.00	1.10	1.05
100%	0.75	0.50	0.63

Table 11: Average surface tension calculations for lemon juice

Concentration	Density (kg/m³)	Height (m)	Acceleration (ms ²)	Radius (m)
0%	≈997	0.005	9.8	0.007
10%	≈1000	0.00395	9.8	0.007
20%	≈1003	0.0024	9.8	0.007
30%	≈1007	0.00215	9.8	0.007
40%	≈1010	0.00205	9.8	0.007
50%	≈1013	0.002	9.8	0.007
60%	≈1017	0.0019	9.8	0.007
70%	≈1020	0.00175	9.8	0.007
80%	≈1023	0.0014	9.8	0.007
90%	≈1027	0.00105	9.8	0.007
100%	≈1030	0.000625	9.8	0.007

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - LEMON JUICE (CONTINUED)

Table 12: Finding average surface tension of solutions: rounded to 3 significant figures

Concentration	Formula	Surface tension
0%	997×0.005×9.8×0.007	≈0.171
	2	
10%	1000×0.00395×9.8×0.007	≈0.135
	2	
20%	1003×0.0024×9.8×0.007	≈0.083
	2	
30%	1007×0.00215×9.8×0.007	≈0.074
	2	
40%	1010×0.00205×9.8×0.007	≈0.071
	2	
50%	1013×0.002×9.8×0.007	≈0.069
	2	
60%	1017×0.0019×9.8×0.007	≈0.066
	2	
70%	1020×0.00175×9.8×0.007	≈0.061
	2	
80%	1023×0.0014×9.8×0.007	≈0.049
	2	
90%	1027×0.00105×9.8×0.007	≈0.037
	2	
100%	1030×0.000625×9.8×0.007	≈0.022
	2	

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

RESULTS - LEMON JUICE (CONTINUED)

Table 13: Trial 1 surface tension calculations for lemon juice

Concentration	Formula	Surface tension
0%	997×0.005×9.8×0.007	≈0.171 J/m²
	2	
10%	1000×0.004×9.8×0.007	≈0.137 J/m²
	2	
20%	1003×0.0025×9.8×0.007	≈0.086 J/m²
	2	
30%	1007×0.0021×9.8×0.007	≈0.073 J/m²
	2	
40%	1010×0.002×9.8×0.007	≈0.069 J/m²
	2	
50%	1013×0.002×9.8×0.007	≈0.069 J/m²
	2	
60%	1017×0.0019×9.8×0.007	≈0.066 J/m²
	2	
70%	1020×0.0017×9.8×0.007	≈0.059 J/m²
	2	
80%	1023×0.0013×9.8×0.007	≈0.046 J/m²
	2	
90%	1027×0.001×9.8×0.007	≈0.035 J/m²
	2	
100%	1030×0.00075×9.8×0.007	≈0.026 J/m²
	2	

PROCESSING AND ANALYSING DATA AND INFORMATION

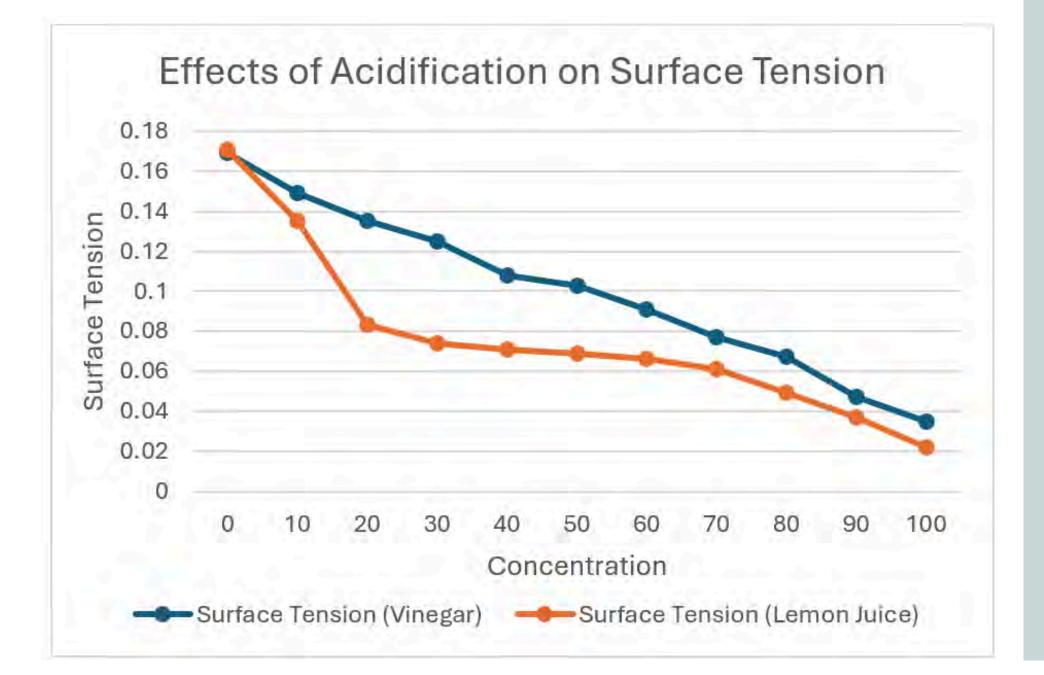
BY BENITA WU AND KYRA HUANG

RESULTS - LEMON JUICE (CONTINUED)

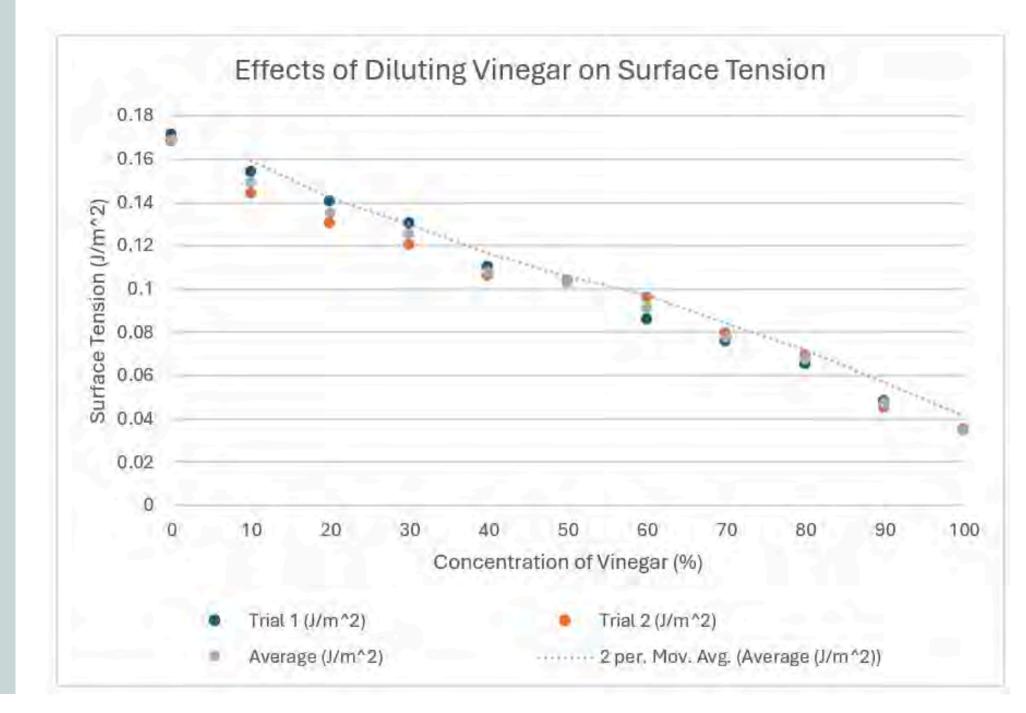
Table 14: Trial 2 surface tension calculations for lemon juice

Concentration	Formula	Surface tension (J/m ²)
0%	997×0.005×9.8×0.007	≈0.171
	2	
10%	1000×0.0039×9.8×0.007	≈0.134
	2	
20%	1003×0.0023×9.8×0.007	≈0.079
	2	
30%	1007×0.0022×9.8×0.007	≈0.076
	2	
40%	1010×0.0021×9.8×0.007	≈0.073
	2	
50%	1013×0.002×9.8×0.007	≈0.069
	2	
60%	1017×0.0019×9.8×0.007	≈0.066
	2	
70%	1020×0.0018×9.8×0.007	≈0.063
	2	
80%	1023×0.0015×9.8×0.007	≈0.053
	2	
90%	1027×0.0011×9.8×0.007	≈0.035
	2	
100%	1030×0.0005×9.8×0.007	≈0.018
	2	

Table 15: Surface Tension of diluted lemon juice from both trials and average


Concentration of Lemon Juice	Trial 1 (J/m²)	Trial 2 (J/m²)	Average (J/m²)
0%	≈0.171	≈0.171	≈0.171
10%	≈0.137	≈0.134	≈0.135
20%	≈0.086	≈0.079	≈0.083
30%	≈0.073	≈0.076	≈0.074
40%	≈0.069	≈0.073	≈0.071
50%	≈0.069	≈0.069	≈0.069
60%	≈0.066	≈0.066	≈0.066
70%	≈0.059	≈0.063	≈0.061
80%	≈0.046	≈0.053	≈0.049
90%	≈0.035	≈0.035	≈0.037
100%	≈0.026	≈0.018	≈0.022

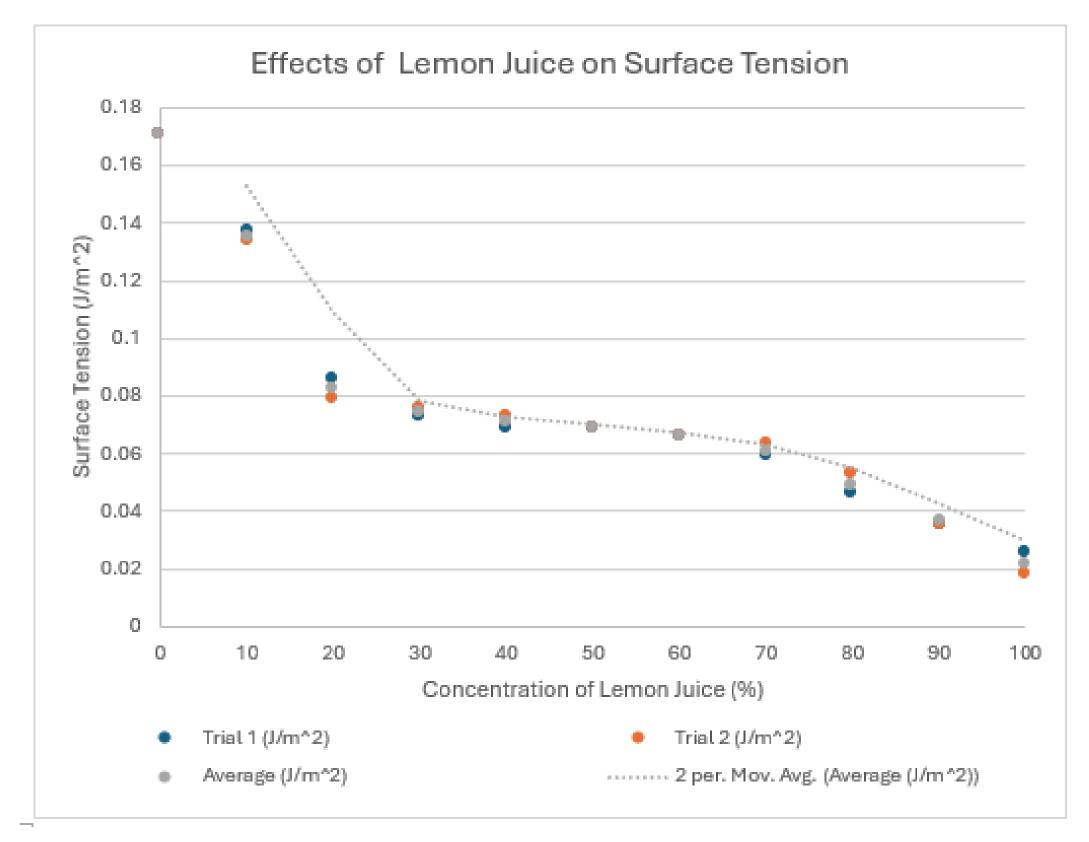
PROCESSING AND ANALYSING DATA AND INFORMATION


BY BENITA WU AND KYRA HUANG

GRAPHS

Graph 1: Effects of diluting vinegar and lemon juice on surface tension of water

Graph 2: Effects of diluting vinegar on surface tension



PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

GRAPHS (CONTINUED)

Graph 3: Effects of diluting lemon juice on surface tension

DISCUSSION

Across all the graphs, a negative relationship between the concentration of the acid and surface tension was shown, proving that as the concentration of acids increased, the surface tension of the liquid decreased. Graph 2 had a relatively more consistent decreasing trend in comparison to Graph 3. As shown in Graph 1 and Graph 3, there was a very steep decrease in the surface tension between 0% and 30% of lemon juice. The slope then became more gradual until 70%, where it dropped again, replicating the steep slope on the left side of the graph. Both Graphs 2 and 3, with diluted vinegar and lemon juice, showed that as more vinegar was added to the solution, the surface tension would decrease can be drawn.

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

DISCUSSION (CONTINUED)

In Graph 1, the lowest point of the average surface tension for the dilution of vinegar was at 0.035 J/m^2 and the peak was at 0.169 J/m^2, while the lowest point for lemon juice was at 0.022 J/m^2 and the peak was 0.171 J/m^2, both acids at 0% to 100% concentration respectively for the lowest point and peak. This showed that as the concentration of acidic substances in the water increases, the surface tension will decrease, supported by the decreasing trend of both lines in the graph and illustrating a negative relationship between the concentration of acids and the surface tension. As more vinegar was added to the liquid until there were no remaining water molecules – reaching 100% concentration – the surface tension decreased by 0.134 J/m^2 while adding lemon juice would reduce the

surface tension by 0.149 J/m^2. As the lemon juice had a slightly lower pH than the vinegar, making it more acidic, it had a vaguely bigger effect on the surface tension of the water. This was supported throughout the graph, as the surface tension of the diluted lemon juice was mostly lower than diluted vinegar. The only exception for this was at 0% concentration, being pure tap water.

In Graph 2, with vinegar diluted into the water, the surface tension from the first trial was usually stronger than in trial 2 by minor differences. When the concentration of vinegar was 0%, the result from trial 1 was higher than in trial 2 by less than 0.005 J/m^2. As the concentration of vinegar increased, there was an increase in the margin of error, with the result from trial 1 being bigger than the result from trial 2 by around 0.01 J/m^2. At 50% and 100% vinegar, the results across both trials were the same. In Graph 3, with diluted lemon juice, the strength of the surface tension across the two trials varied. However, the margin of error between the trials was smaller than vinegar, the difference generally being less than 0.01 J/m^2, as shown in Table 15. At 0%, 50%, and 60% of lemon juice, the surface tension across all trials was identical. This shows that the precision of the data was relatively high. Across the graphs, the few inconsistencies and fluctuations could have been due to potential errors in the experiment.

PROCESSING AND ANALYSING DATA AND INFORMATION

BY BENITA WU AND KYRA HUANG

DISCUSSION (CONTINUED)

The decreasing surface tension when acid was added to the solution could have been due to the decrease in water molecules. Water has a naturally higher surface tension than vinegar due to its intermolecular force, polarity, and hydrogen bonding. Water has a higher polarity and stronger hydrogen bonding than vinegar, causing its intermolecular force to be high, as hydrogen bonds are the strongest intermolecular force (Toppr, 2020). Acids generally exhibit 3 intermolecular forces: Dipole Dipole, hydrogen bonding, and London dispersion (Cassandra, 2021). However, the hydrogen bonding in water is a lot stronger than those in vinegar and lemon juice, due to its molecular structure of two negative oxygen attracted with 1 positive hydrogen (Monzur, 2016). So, as more acid is

added to the solution, less hydrogen bonding will be formed, decreasing its intermolecular force, which decreases the overall surface tension.

The results could have also been affected by the temperature. Acidic substances generally have a higher temperature than basic substances. An increase in the temperature could lead to a decrease in the surface tension. This is due to molecular thermal activities increasing, which causes a decrease in the intermolecular cohesive forces (Unacademy, 2022). As the temperature of water increases, more hydrogen ions are also formed due to endothermic processes, which can either enhance or weaken the hydrogen bonds, affecting their strength (LibreTexts, 2013).

Overall, the precision of this data was fairly high. The surface tension remained consistent across both trials, with a slow, downward trend of the results as the concentration of vinegar increased, which supports the hypothesis. There were a few small fluctuations which may have been caused by external factors that were not controlled or were hard to control.

EVALUATION

BY BENITA WU AND KYRA HUANG

IMPROVEMENTS

A main improvement for this experiment was to use multiple different methods to measure surface tension. This would drastically improve the reliability of the results as thereoretically, different methods should still provide similar results. Another improvement was to use a thermometer to measure the starting temperatures of the liquids to ensure that there is a consistent starting temperature as surface tension is affected by temperature. This would increase the accuracy of the investigation as temperature was an uncontrolled variable.

POTENTIAL ERRORS

Table 16: Systematic Errors

Systematic Errors	Effect on Results	Improvements
Tap water was used, which	This could have altered the	Bottled water from the same
means there could be varying	starting acidity of the water	brand could be used to
differences in acidity and pH.	used as tap water could	improve the accuracy.
	contain different amount of	
	acidity to bottled or spring	
	water.	
The straw was placed in	Whilst the cup had a flat	To make sure the straw is
different areas of the cup	bottom so the height would	placed in the same spot
during different trials.	not have changed much, this	during every trial. To help
	still could have slightly	this, the chosen spot can be
	altered the results.	marked at the bottom of the
		cup, so it is easier to find.

Table 17: Random Errors

Random Errors	Effect on Results	Improvements
Taking the height of water	This would have affected the	Setting a camera up on the
rising above the surface	precision of the results as	same angle to capture the
relied on eyesight, could	relying on eyesight is not	height.
have been potential human	completely accurate.	
error		
Some inconsistent dilutions	This would have affected the	By using measuring cups
of acid and water from using	accuracy of the results as	labelled for every 5 intervals
measuring cups with	slight differences with the	so no measurement had to
intervals of 20mL.	concentration could have	be estimated.
	affected the overall surface	
	tension.	

EVALUATION

BY BENITA WU AND KYRA HUANG

POTENTIAL ERRORS (CONTINUED)

Table 21: Factors not controlled/were hard to control.

Uncontrolled factors	Effect on Results	Improvements
Room temperature around	The temperature of the water By controlling the room	
the experiment.	could be affected by the	temperature as much as
	room temperature, therefore	possible and carrying out the
	affecting the precision of the	experiments as quickly and
	results as temperature alters	efficiently as possible.
	surface tension.	
Lighting	The natural lighting could	By opening lights and closing
	have dimmed throughout the	windows to keep the
	time of the experiment,	environment at a similar
	which could have changed	lighting.
	the perception of the results,	
	affecting the accuracy of the	
	results.	

FURTHER INVESTIGATION

Further investigations on this topic of the effect of acidification on surface tension, would be to investigate with a variety of strong and weak acids. By observing the differences in surface tension with more acids, more conclusions can be drawn on how the difference chemical properties of each acid affect its surface tension compared to others. Basic substances can also be tested to experiment on the effect alkalines have on surface tension and how their chemical properties affect the result of the experiment.

Figure 7: Photos showing different acids and bases tested for pH that could be used for further investigation.

EVALUATION

BY BENITA WU AND KYRA HUANG

CONCLUSION

The aim of this investigation was to determine the effects of acidification on the surface tension of water in relation to ocean acidification. The hypothesis that if the acidity of the solution increases, the surface tension will decrease due to molecular interactions, is supported. This is shown through the graphs, where there was a steady downward trend depicting the decrease of surface tension as the concentration of vinegar and lemon juice increases. Many improvements could be made to this experiment to avoid potential biases and increase the accuracy of this experiment.

ACKNOWLEDGEMENTS

Dr O'Halloran (our teacher) gave us feedback on our discussions and guided us to understand the scientific concepts.

Ms Salvi (our teacher) helped us with getting initial ideas for the experiment and helped us understand the theories behind the experiment better.

WORD COUNT

2198 words (headings, titles, tables, figure captions, references, and log book not included)

**There can be up to 10% tolerance of the word limit.

Figure 8: Photos showing the procedures during the experiment.

REFERENCE LIST

BY BENITA WU AND KYRA HUANG

Acids and Bases (2018) BYJUS. BYJU'S. Available at: <u>https://byjus.com/chemistry/acids-and-bases/</u>. (Accessed: May 13, 2024).

AL-Jabri, N. N. (2018) Chemical composition and antimicrobial potency of locally grown lemon essential oil against selected bacterial strains, Sciencedirect.com. Available at: <u>https://www.sciencedirect.com/science/article/pii/S1018364716303032</u>. (Accessed: June 21, 2024).

Atari, A. and Pawlik, M. (2016) "Surface tension and gas dispersion properties of fatty acid solutions," Minerals Engineering, 85, pp. 138–147. do: 10.1016/j.mineng.2015.11.006.

Bess Ruff, M. A. (2011) 3 ways to measure surface tension, wikiHow. Available at: <u>https://www.wikihow.com/Measure-Surface-Tension</u>. (Accessed: May 13, 2024).

Bonding Frameset (2024) Westfield.ma.edu. Available at: <u>https://www.westfield.ma.edu/personalpages/cmasi/gen_chem1/Bonding/lewis_str</u> <u>uctures/bonding_frameset.htm</u> (Accessed: May 13, 2024).

Cassandra, A. (2021) Intermolecular force and flowing vinegar, Brainly. ph. Available at: <u>https://brainly.ph/question/13018776</u>. (Accessed: May 15, 2024).

Chemical bonding – the alcohol pharmacology education partnership (2024) Duke.edu. Available at: <u>https://sites.duke.edu/apep/module-4-alcohol-and-the-</u> <u>breathalyzer-test/biology-and-chemistry-connections/chemical-bonding/</u> (Accessed: May 13, 2024).

CO2 and ocean acidification: Causes, impacts, solutions (2019) Union of Concerned Scientists. Available at: <u>https://www.ucsusa.org/resources/co2-and-ocean-</u> <u>acidification</u> (Accessed: May 13, 2024).

Define surface tension (2022) Byjus.com. BYJU'S. Available at: <u>https://byjus.com/question-answer/define-surface-tension-1/</u>. (Accessed: May 13, 2024).

REFERENCE LIST

BY BENITA WU AND KYRA HUANG

Explain the effect of temperature on surface tension and viscosity (2022) Unacademy. Available at: <u>https://unacademy.com/content/question-</u> <u>answer/physics/explain-the-effect-of-temperature-on-surface-tension-and-</u> <u>viscosity/</u>. (Accessed: May 13, 2024).

Hydrogen bonds make water sticky (2024) Hawaii.edu. Available at: <u>https://manoa.hawaii.edu/exploringourfluidearth/chemical/properties-</u> <u>water/hydrogen-bonds-make-water-sticky</u> (Accessed: May 13, 2024).

Ionic and Covalent Bond (2020) VEDANTU. Available at: <u>https://www.vedantu.com/chemistry/ionic-and-covalent-bond</u>. (Accessed: May 13, 2024).

Laurén, S. (2023) Surface tension of water – Why is it so high?, Biolinscientific.com. Available at: <u>https://www.biolinscientific.com/blog/surface-tension-of-water-why-</u> <u>is-it-so-high</u> (Accessed: May 13, 2024).

Monzar, R (2016) Question #85471 Socratic.org. Available at: <u>https://socratic.org/questions/5841f2377c01497519e85471</u> (Accessed: May 13, 2024).

Omta, A. W. et al. (2003) "Negligible effect of ions on the hydrogen-bond structure in liquid water," Science (New York, N.Y.), 301(5631), pp. 347–349. doi: 10.1126/science.1084801.

Shah, K et al. (2022) Intermolecular forces - AP chem study guide, Fiveable.me. Available at: <u>https://library.fiveable.me/ap-chem/unit-3/intermolecular-</u> <u>forces/study-guide/aq9pSoNJoW70eCdben01</u>. (Accessed: May 13, 2024).

Surface tension and water (2019) Usgs.gov. Available at: <u>https://www.usgs.gov/special-topics/water-science-school/science/surface-</u> <u>tension-and-water</u> (Accessed: May 13, 2024).

REFERENCE LIST

BY BENITA WU AND KYRA HUANG

Surface tension in food (2011) Seasoned Advice. Available at: <u>https://cooking.stackexchange.com/questions/17529/surface-tension-in-food</u> (Accessed: May 13, 2024).

Surface tension of water — overview & importance (2024) expii. Available at: <u>https://www.expii.com/t/surface-tension-of-water-overview-importance-7988</u> (Accessed: May 13, 2024).

Surface tension (2022) Kibron. Available at: <u>https://www.kibron.com/surface-</u> <u>tension</u>. (Accessed: May 13, 2024).

Temperature dependence of the pH of pure water (2013) Chemistry LibreTexts. Libretexts. Available at:

<u>https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Text</u> <u>book_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Acids_</u> <u>and_Bases/Acids_and_Bases_in_Aqueous_Solutions/The_pH_Scale/Temperature_</u> <u>Dependence_of_the_pH_of_pure_Water</u>. (Accessed: May 13, 2024).

The Editors of Encyclopedia Britannica (2024) "acid," Encyclopedia Britannica. Vedantu (2020) The addition of lemon juice into the water makes it a better conductor, Vedantu.com. Available at: <u>https://www.vedantu.com/question-</u> <u>answer/the-addition-of-lemon-juice-into-the-water-makes-class-9-physics-cbse-</u> <u>5f80cb1493ca24529275b6e9</u>. (Accessed: June 21, 2024).

Vedantu (2020) The addition of lemon juice into the water makes it a better conductor, Vedantu.com. Available at: <u>https://www.vedantu.com/question-answer/the-addition-of-lemon-juice-into-the-water-makes-class-9-physics-cbse-5f80cb1493ca24529275b6e9</u>. (Accessed: June 21, 2024).

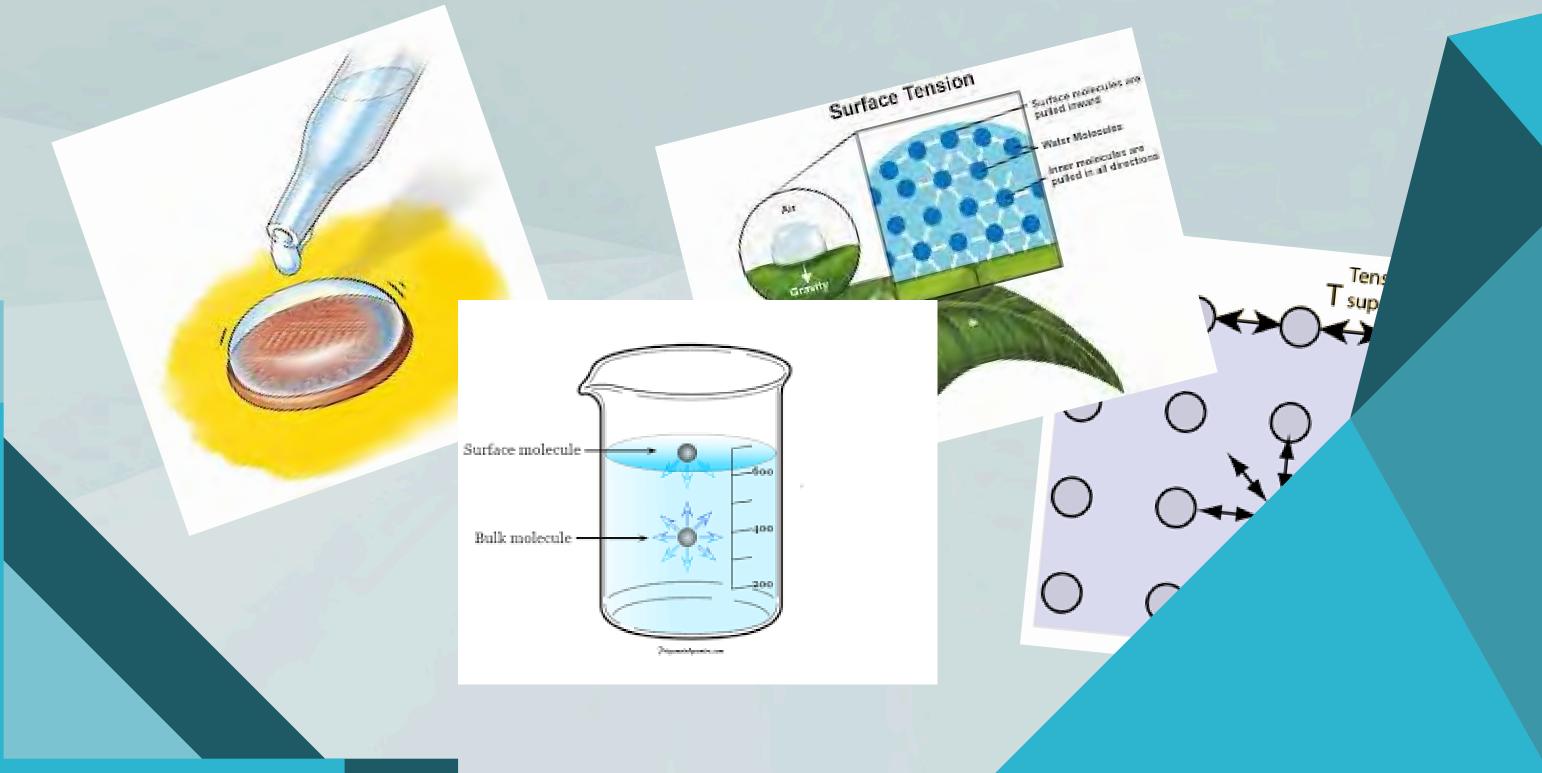
Vedantu (2021) Vinegar dissolves in water, Vedantu.com. Available at: https://www.vedantu.com/question-answer/vinegar-dissolves-in-water-statewhether-the-class-11-chemistry-cbse-6094ac96ff93fa35fbc14ed7. (Accessed: May 15, 2024).

REFERENCE LIST

BY BENITA WU AND KYRA HUANG

Vinegar Formula (2022) Extramarks. Available at: <u>https://www.extramarks.com/studymaterials/formulas/vinegar-formula/</u> (Accessed: May 13, 2024).

Water transport in plants: Xylem (2024) Gatech.edu. Available at: <u>https://organismalbio.biosci.gatech.edu/nutrition-transport-and-</u> <u>homeostasis/plant-transport-processes-i/</u>. (Accessed: May 14, 2024).


What are the strongest to weakest intermolecular forces? BYJU'S (2022) Byjus.com. BYJU'S. Available at: <u>https://byjus.com/question-answer/what-are-the-</u> <u>strongest-to-weakest-intermolecular-forces/</u> (Accessed: May 13, 2024).

Why does vinegar/acetic acid have a higher boiling point but lower surface

tension than water? Which has the stronger intermolecular force then? (2020) Toppr Ask. Available at: <u>https://www.toppr.com/ask/en-au/question/1876412/</u>. (Accessed: May 13, 2024).

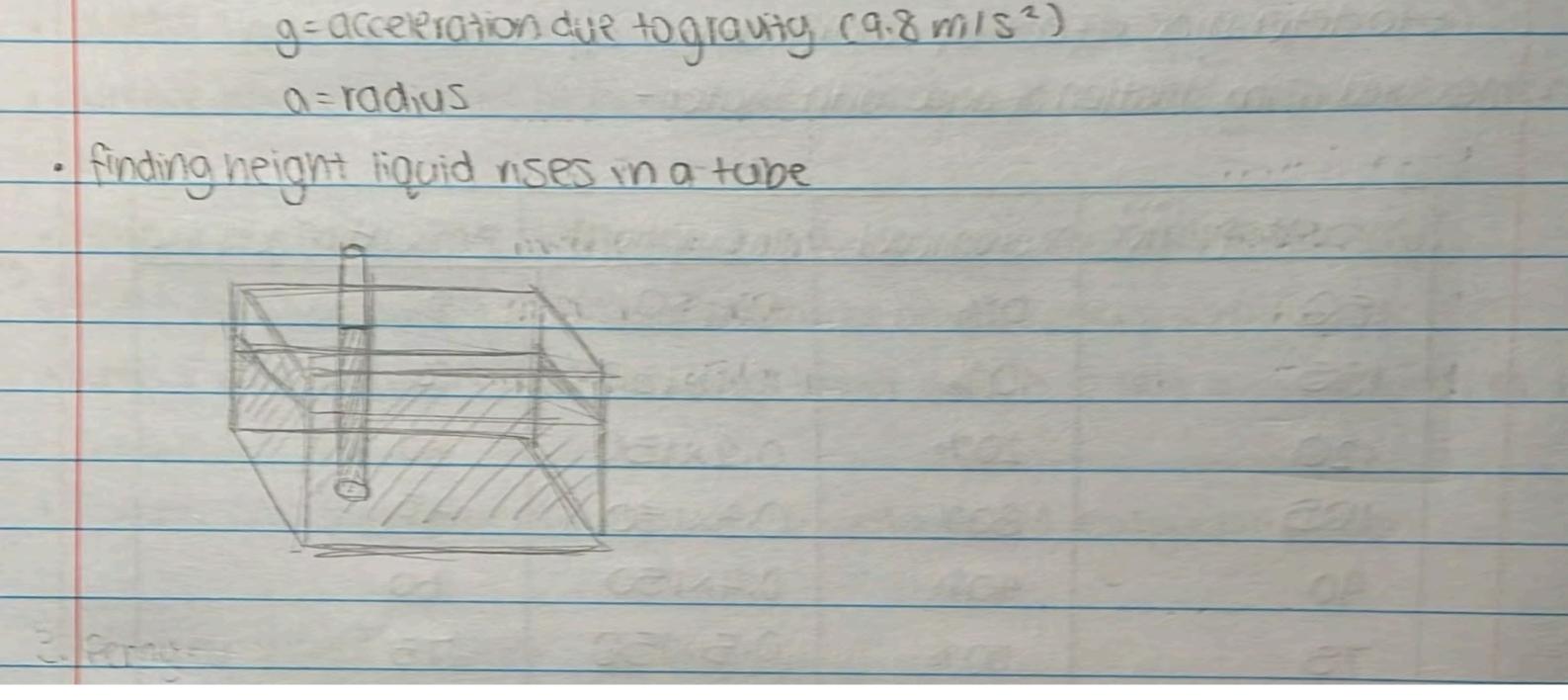
World of Molecules (2024) Citric acid molecule, Worldofmolecules.com. Available at: https://www.worldofmolecules.com/acid-base-molecules/citric-acid.html (Accessed: June 21, 2024).

Scientific Ing look blue when it reflects chemicals were around to create 1?? ·How can you tell a black hole mode of antimother from a black hole why don't galaxies have a natural did concer exist before mon-mode magnetic field like the earth does sch ences one cure ocean that oxygen · Why is the moon so bright? 5 can PCR be improved . What Makes space cold? con 4 there just be produce CH what is it about the edi c vattonn go Biology · HOW do trees fur concer? Spore and makes it the sky? made BUM 30H . -0 . 00 · affect of acidification surface tension 0120 Brainst 54 c' · Does wind speed affect the evaporation rate of water 20/3/20 affect surface tension? dissolving a salt molecule in water why don't atoms collapse if they are mostly empty space? 1 . . · why don't electrons enter the nucleus? effect the acidification of Soil? > plant growth in the pH of soil effect how does climate change · why are sound waves invisible? · do atoms have colour? make atoms ionize? · How does water purity Chemisty how does Physics

How different biomes affect pH 22/3/2024 * test pH of water / soil in different biomes * climate change - increase in acidification in pH · investigate plants and animals that live there * most efficient pH of soil for different plants (of different biomes) - plant growth * learn where plants grow best L's help case climate change effects * ocean acidéfécation - cause of clémate change is encrease of trees (that suits the ph of ocean) around banks - decrease acidification from carbon dioxide * investigate how different plants alter pH * pollution - water become more actidic = get water & soll sample from different blomes differ the total fit PLANT STRUCT TO SEE STRUCTURE 12 11217,5 ON'1 '-

	Ocean Acidification 2/4/2024
	* climate change => ocean acidification
2	-> ocean became more acidic
	is natural => pH of 8
	* plants & algae can alter pH of the ocean
	- I notice the state of the sta
	Acidification problems-
6	atters marine food chains and food supply to numans
	decreases storm protection from reeps
	decreases tourism opportunities
	reduces coral calcification and growth -> decline in coral diversity
	· incleases visk of mortality in some species
	> skeletons of corais in more acidic woters were significantly thinner
1	L'> covais can't produce as much aragonite to thicken their skeletons
	· creates conditions that eat away at the minerals used by oysters clams, lobsters,
	shrimp, coral reefs

	Ocean acidification reduces amount of carbonate $\rightarrow a$ key building block in seawater L>makes it more difficult for marine organisms such as coral and plankton to form their shells and skeletons
	Ocean Acidification
TAR	$\begin{array}{c} (H) \\ (H) \\$
	less acidic acidic


- 10/4/24/17 10/11 FAILED ATTEMPT X -finding differences between acids · Base = baking powder · Acid = citric acid and bases CERTERA For Destal * results were inconsistent > pH target volue = 3,5,9,11 Amount of pH changer PH value Amount of odged woter toiget pH vaiue pH changes 0.0249 3 750mL 7.5 CHIE POWDER 2.3799 Citric pouder 5 750mL7.5 Fili 9 all a con 750mL Batingsoda 7.5 11 750mL Bakingsoda 7.5 found through a

2	dilution calculator
	in a designed - and the shered of the part of the
	Problems=
	- calculator may not have been accurate -> too diluted / concentrated
22	- may not have been enough difference between pH values
	- powders may not be strong, acid ic or alkalinic enough
	GOALL - effects of pH on surface tension
Sim	
	and the second sec

-	Surface tension-
	•the property of the surface of a liquid that allows it to resist external force
	water's surface tension is caused by hydrogen bands betweens its molecules
0	Lowsthe 2nd largest surface tension
	mercury 's surface tension is due to the strong metallic bonds exhibited by its
	Molecular Structure
	4> has highest surface tension
0	surface tension is an important parameter in many industria) applications
	surface tension of water helps creatures (mostly of the insecto class) to walk on
	hidter
•	helps water move up the xylem tissue of higher plants without breaking up
	allows certain organisms to float, move and live on the waters surface
	Waters high surface tension drives the water droplet to take a shape with as little
	surface area possible
0	if water had lower surface tension > water would evaporate faster

-	Measuring surface tension- (wikinow)
7.	Bajance beam -
	Formula: $F = 2sd$
	L7F = FOICE (N)
	S= SUIFACE TENSION (N/m)
	d= length of needle
•	using a balance beam with a box on one side and a needle on the other
	- balance the sides out (counterbalance)
•	resting the needle in a bowl of water
	L>start dropping weight in box on other side until needle is out of water
	4 gramsx0.00981N/g = N
-	needle
	Madile 12 < box
-	

- 「「「」「」「キー」「ニーチ」 2. Capillary Action-· uses admesion and confision forces -> causing liquid to rise up in a tube of liquid Formula = S = phgo L> S = Surface tension P = density h= height

		J. Kert	13/4/24		
Question - The Effects of Acidification on the surface tension of water					
Hypothesis - if the c	Hypothesis - if the acidity of the solution increases, the surface tension will				
decrease due to ma	necular inte	2 Noithons	I THE THE THE		
Experiment -			OENOL & - MUERIE		
. using capillary acti	on to measu	INE THE SINEACE	tension of various liquids-		
olemon jui	ce .	and compare	tension of various nguius		
o vinegar) acid	lic	FRIDERIT - M		
- to determine e	effect of acid	ification on s			
· measured using diluti			LUIDDI-C		
5.4.		Alleria Property and	MRI GID WILL FRANKING STUTIENTS		
Amount of water	Dilution level	calculations	Amount of acid (mL)		
150	0%	0×150	0		
135	10°/0	0.1×150	WH5		
120	20%	0.2×150	30		
105	30°%	0.3×150	45		
90	40%	0.4×150	60		
75	50%	0.5×150	75		
60	60%	0.6×150	90		
45	70%	0.7×150	105		
30	80%	0.8×150	120		
15	90%	0.9×150	135		
0	100%	dx150	150		
Vinegan results-			20/4/24		
Concentration - (Tr		(Trial 2)	10-11-11-11-11-11-		
	0=2.2mm	0°/0= 4.9mm	70%= 2.3 mm		
10% = 4.5mm 80%		10°/0=4.2mm	80%= 2 mm		
	o = 1.4 mm	20% = 3.8 mm			
40% = 3.2 mm	o-Imm	40%=3.1 mm			
50% = 3mm		50% = 3 mm			
		60°/0 = 2.8 mm	0		
$60^{\circ}/_{\circ} = 2.5 \text{mm}$		100 . 2.0			

Lemon Juice results -	1017114-0112514124
concentration - atrial 1) . or a	(trial 2) " A NERGEN ADRIANT STORAL STORAGE ST
$0^{\circ}/0 = 5 mm$	0% = 5 mm
$10^{\circ}/_{\circ} = 4 mm$	$10^{\circ} = 3.9 \text{ mm}$
20% = 2.5 mm	2096 = 2.3 mm
30% = 2.1 mm	$30^{\circ}/_{\circ} = 2.2 \text{ mm}$
40% = 2 mm	40°/0 = 2.1 mm
50% = 2 mm	50% 22 mm
60% = 1.9 mm	600/0 = 1.9 mm
70% = 1.7 mm	70% = 1.8 mm Hu. 2010 19
80°/0 = 1.3 mm	20% = 1.5 mm ///
$90^{\circ}l_{\circ} = 1 \text{ mm}$	90°/0 = 1.1 mm 10
	100% = 0.5mm

111 DES ANTE DE HILLE 30/4/24 Conclusion - observations · Acidity increases -> surface tension decreases - Could be due to intermolecular forces - hydrogen bonding ===((DH/JO) - polarity - temperature ENTER HE REPORTED DRUGGED AND SUPPLY OF MILLE CONFERST AND THE HEL FOR FORTH - 1 1/2 -

OSA RISK ASSESSMENT FORM

for all entries in (\checkmark) \Box Models & Inventions and \blacksquare Scientific Inquiry

This must be included with your report, log book or entry. One form per entry.

STUDENT(S) N	AME: Kyra Huang and	Benita Wu	ID:
	eymous College		
Activity: Give a	brief outline of what you are plannir	ng to do.	
Finding th	e suiface tension of variou	is acidic liquids through -	the use of capillary
action. This	will be done by measuring.	the height of water and	12 acids (lemon
juice and	vinegar) risen through a s	straw in the middle of a	a glass cop. This
will be don	e with various percentages	of dilution for each a	(id)

Are there possible risks? Consider the following:

- Chemical risks: Are you using chemicals? If so, check with your teacher that any chemicals to be used are
 on the approved list for schools. Check the safety requirements for their use, such as eye protection and
 eyewash facilities, availability of running water, use of gloves, a well-ventilated area or fume cupboard.
- · Thermal risks: Are you heating things? Could you be burnt?
- · Biological risks: Are you working with micro-organisms such as mould and bacteria?
- · Sharps risks: Are you cutting things, and is there a risk of injury from sharp objects?
- Electrical risks: Are you using mains (240 volt) electricity? How will you make sure that this is safe? Could you use a battery instead? *Only batteries can be used for Models & Inventions entries
- Radiation risks: Does your entry use potentially harmful radiation such as UV or lasers?
- · Other hazards.

Also, if you are using other people as subjects in an investigation you must get them to sign a note consenting to be part of your experiment.

Risks	How I will control/manage the risk	
Glass cups being broken on accident	being careful during the experiment and keeping cups in middle of	
	handle liquids with caution and wearing safety glasses	
hands of bioken objects (if that happens) causing injunes	cleaning up any accidents infimediately to prevent injulies	
spillages of iquids may cause tripping hazards.	cleaning up all spillages immediately to prevent injuries	

(Attach another sheet if needed.)

Risk Assessment indicates that this activity can be safely carried out

RISK ASSESSMENT COMPLETED BY (student name(s)): Benita Wa, Kura Huang

SIGNATURE(S): Benota D By ticking this box, I/we state that my/our project adheres to the listed criteria for this Category. lorav TEACHER'S NAM SIGNATURE: DATE: