

Prize Winner

Programming, Apps & Robotics

Year 3-4

Methum Manathunga

Richmond Primary School

Department of Defence

Soil Moisture Monitor – Report By M. M. Methum Ransath Richmond Primary School

The aim of the entry, its scientific purpose, and potential applications

My aim of the project is to detect the soil's moisture level and indicate to the user if the moisture level drops below a certain level. Different plants need different moisture levels to grow properly. Therefore, it's essential to keep the moisture level healthy. (I got this idea when I saw my mum often forget to water her plants and complain about it).

I used the Arduino Resistive Soil Moisture Sensor Module to measure the soil moisture level. It measures the moisture level by using the resistance between the two probes.

Potential Applications

- Home Garden Beds
- Plantation Nurseries

Future Development

My future intentions are to

- Improve this project to an automatic irrigation system.
- Integrate temperature sensor, humidity sensor, and SD card module to collect data to learn what type of environment a specific plant needs.

The type of robot or computer/device required to run the program

- Arduino IDE 2.3.2
- Soil moisture sensor module
- Tinkercad to design the project
- Arduino Uno R3 Board

- A computer for initial setup
- 9v Battery
- 220-ohm resister
- Jump wires
- LED bulb
- Breadboard
- A box for packaging
- Double-side adhesive tapes

Instructions to run the Soil Moisture Monitor:

I have used a laptop to display the current moisture level and to get the input of the expected ideal moisture level from the user.

- 1. Insert the 2 probes of the Soil Moisture Monitor in the soil.
- 2. Now, connect the Soil Moisture Monitor to your computer
- 3. Then, open the program code in Arduino IDE.
- 4. Open the Serial Monitor window in Arduino IDE.
- 5. The current moisture level will be displayed on the Serial monitor screen.
- 6. Next the user is asked to set the ideal moisture level.
- 7. Provide the expected moisture level using the laptop keyboard.
- 8. Now disconnect the laptop.
- 9. If the moisture level is below the ideal moisture level, the LED will go red. It keeps on checking every 10 seconds until water the plant.
- 10. If it's above the moisture level the LED will turn off.
- 11. The program will check the moisture level again in 6 hours.

Video Link

https://www.youtube.com/watch?v=uXariPbM4-s

Application Code And Explanation

```
int idealMoistureLevel; // Declare a global variable to keep ideal moisture level
void setup(){ // Runs only one time when setting up
Serial.begin(9600); //Start the serial communication
pinMode(13, OUTPUT); // Declare the pins
pinMode(12, OUTPUT);
digitalWrite(13, HIGH); // Give power to the pin 13
int currentMoistureLevel = analogRead(A4); // Read the current moisture level
and save in a variable.
delay(3000); // Waiting for 3 seconds
Serial.println("Your current moisture level is");
Serial.println(currentMoistureLevel); // Print the current moisture level
digitalWrite(13, LOW); // Stop giving power to pin 13
Serial.println("Please enter the ideal moisture level you want"); // Asking the
user input
while(Serial.available() == 0){ // wait unill it's received
}
idealMoistureLevel = Serial.parseFloat(); // save the user entered value to a
variable
Serial.println(idealMoistureLevel); // print the value
void loop() // This block runs repeatedly
 digitalWrite(13, HIGH); // Give power to pin 13
 int moistureValue = analogRead(A4); // Reading the moisture level and saves to
a variable
 Serial.println(moistureValue); // Print the current reading
 if(moistureValue < idealMoistureLevel){ // check if the current moisture value
is below the ideal value
  digitalWrite(12, HIGH); // turn the LED on
  digitalWrite(13, LOW); // turn the soilmoisture sensor off
  delay(10000); // Wait for 10 seconds
 }
 else{ // Moisture leveel the above the ideal value
  digitalWrite(12, LOW); // Turn the LED off
  delay(3600 * 6 * 1000); // Wait for 6 hours
 }
}
```


Acknowledgment of any external support provided to the entry

To build my idea into a project using Arduino, I had to learn basic concepts of programming with help from my dad, video tutorials, Scratch, and TinkerCad. I have made a few applications, and games using Visual Studio and Arduino in the past 2 years which helped me to understand basic programming concepts. I learned about while loops, variables, and functions.

For this project, my dad helped me install Arduino IDE, understand how to work with breadboards, understand the videos and articles, and TinkerCad codes I watched. TinkerCad was a good source for me to find the specific Arduino codes on how to light up an LED, get user inputs, print values, and examples of how soil moisture sensors work.

Bibliography

TinkerCad

https://www.tinkercad.com/dashboard

Arduino basic concepts

https://www.youtube.com/watch?v=cd04o5yqSAU&list=PLlBVuTSjOrclb0 iCMSRpS_H1lSrlSVeEm

Get user input in Arduino

https://www.youtube.com/watch?v=XishaRwUlGM

Programming

https://www.arduino.cc/reference/en/language/structure/controlstructure/while/ https://www.arduino.cc/reference/en/language/variables/variable-scopequalifiers/scope/