OLIPHANT

\\

Prize Winner

Programming, Apps &
Robotics

Year 7-8

Jackson Burford

Aberfoyle Park High School

Australian Government of South Australia

Department of Defence Department for Education

nergy Conversion in Radioisotope
Thermoelectric Generators

VXS Space - RTG Power Output Calculator - by Jackson Burford
File
Cylinder | Output Graph | About |
Radius (R) [cm]:] Instructions:
1. Enter the radius (R) [em].
Height (H) [cm]: 8 2. Enterthe height (H) [cm].
3. Enter the load resistance (Q).
Load Resistance (Q): |5 4. Select the isotope type.
5. Enter the mission duration in years. 7.7, e
" . Pu- g 6. Select the
Isotope Type: @ Pu-238 | & Sr-90 7. Click Submitto calculal VXS Space - RTG Power Output Calculator - by Jackson Burford o x
Mass (ka): G 8. Click Export Results tolf .
Cylinder | Output Grapl: | About
Mission Duration (years) 50 I ‘ I
Time Elapsed (years): 00
Thermoelectric Material: [Bismuth Telluride (Bi2Te: .|
Power Output Over Time Output (Watts): 0
Submit | ExportResults | Power Outout
0.055
0.050
]
£
i
£ o015
3
P
H
0.040 |
@ Power Output © Heat Transfer Rate (Q) Power Output: 0.06 0.035 1
3 10 20 0
Time Flapsed (years)
= Power Output = Heat Transfer Rate (Q) Power Output: 0.06

28/06/2024

By Jackson Burford

Introduction

RTG Stands for Radioisotope Thermoelectric Generator. An RTG is an invention for space travel to
generate electricity in space for a long period of time, this can be from a few decades to potentially
hundreds of years.

This is very important for deep space missions, as the RTG will provide reliable power for the
instruments and the spacecraft.

This 2024 Oliphant Science Awards project is an RTG Mission Planner App. The user of the
Mission Planner will give certain inputs to the App, (height and radius of the radioisotope cylinder
used in the RTG, the isotope type, thermoelectric material and mission duration) and the app will
use these inputs to calculate the power generated by the RTG over time.

Project Inspiration

This project is inspired by Sir Marcus Oliphant and his work with radioisotopes. In the 1930s, at
Cavendish Laboratory, Sir Marcus Oliphant collaborated with Ernest Rutheford to bombard
deuterium with deuterons which led to the discovery of two new isotopes, tritium and helium-3. Sir
Marcus Oliphant also created new techniques for separating isotopes using electromagnetic fields.
This was later used in WWII in the Manhattan Project. Sir Marcus Oliphant's work with hydrogen
isotopes showed us the first experimental evidence of nuclear fusion. Sir Marcus Oliphant's
contributions to isotope research were significant. He discovered new isotopes and developed
methods for separating them.

About the Project

In this application you can choose out of two different isotopes, Plutonium-238 or Strontium-90.

Plutonium-238 (Pu-238) is used for space exploration, it is invented as fuel for an RTG, a
radioisotope thermoelectric generator. Pu-238 is used as fuel because of its long half-life and its
ability to generate heat.

Strontium-90 (Sr-90) is also a radioactive isotope created by nuclear fission; it can last about 28.8
years for half of its decay. Sr-90 generates heat as it decays, this makes it useful for space
exploration.

An RTG uses the Seebeck effect to generate electricity, this is when you combine to conductors of
electricity and applied heat to one end and exposing the other end to cold, an electrical voltage will
be created across the materials, this is because electrons in the materials flow from the hot side to
the cold side. These are referred to as a thermocouple and an RTG would use hundreds of

thermocouples to generate electricity, and the isotopes decay heat which turns into the heat for the
thermocouple.

Project Structure

e The project is organised into several Python files, each serving a specific purpose:

o main.py: The entry point of the application, which initialises the GUI and starts
the application.

o gui.py: Manages the graphical user interface, including input fields, buttons,
and tabs for different geometric configurations.

o calculations.py: Contains the logic for calculating power output based on
user inputs.

o plotting.py: Handles the creation of interactive graphs using Plotly to
visualise power output data.

o data.py: Stores constants and data such as thermoelectric materials and
isotope properties.

o utils.py: Includes helper functions for input validation and exporting results.

How Application Works

e The user inputs various parameters into the application, such as isotope type,
thermoelectric material, time elapsed, and load resistance.

e The application uses these inputs to calculate the power output of the RTG for a cylinder
designed by the user.

e The calculations are based on the properties of the selected isotope and material, as well
as the thermal and electrical equations governing RTG performance.

e The results are displayed on the GUI, and users can visualise the power output over time
using an interactive graph.

What It Does

Once the user gives the required inputs, the application will calculate not only the power output, but
the change in power output over time. The required inputs are the isotopes, thermoelectric
materials, isotope cylinder radius, isotope cylinder height and mission duration.

Once given the inputs, you will also have access to a graph tab where you can see the power
output of the RTG at the start of the mission and can see how the power output slowly goes down
during the course of the mission.

The user will give inputs and then change the inputs to optimise the efficiency of the RTG.

Benefits

This app has many benefits, if advanced, could even be used in organisations like NASA and
SpaceX, to help plan for their RTG Missions, or even without the advancements, could still be used
as a practical tool for students and researchers to simulate and study RTG performance. This can
also inspire students to get engaged in Space Exploration or Physics (Isotope studies).

It also enhances an understanding of RTG technology and the role of radioisotopes in space
missions.

In the future, from near future to generations from now, deep space travel will become more and
more common, and RTGs will be a very important part for generating electricity, as solar panels
may not be as efficient when further from the sun.

Project History

The application started off with a simpler version that would only calculate the heat transfer rate
(NO GUI OR GRAPH), however the difference with this version is that the user could choose
whether to choose a cube, sphere, pyramid or cylinder, however | found out later that a cylinder is
the shape that is most commonly used for an RTG.

Once the program was working it would display the heat transfer rate. At first it would display
inaccurate outputs (One example in the screenshots). | went through the process of turning it into a
GUI, the first version of the GUI was still very basic. It had a box at the top which would display the
power output and under that were some of the required user inputs, height and radius. | did also
have a few extra inputs such as DeltaT (Difference between hot side and cold side) and the Length
of the wall of the Cylinder (this was assuming it was hollow, | removed this later because they are
not supposed to be hollow). I still had the different shapes option for the first few versions of the
GUI.

| upgraded the app so that it also displays power output power output (which was the original
intention of the app as it was much more important than the heat transfer rate). To do this, | had to
add extra inputs such as load resistance, isotope material and thermoelectric material.

It ended up being too hard to run in one large file of code so | used ChatGPT to help me separate
the code into smaller files. (ChatGPT was used for cleaning up code, and helping troubleshoot final
features). Once the code was cleaned, | also added a graph and a mission duration input so that
the user could see the difference in power output over time.

The Future

For this app to be at a level where it could be useful in real space missions, there would have to be
many changes, some possible things could potentially be to add more isotopes and more
thermoelectric materials to the database.

It would also be important to enhance the user interface with more advanced features such as 3D
visualisation of the RTGs and their components. Expanding the application to simulate other types
of power systems used in space exploration.

A way to increase the simulation accuracy would be to integrate real-time data from space
missions and collaborate with educational institutions to make the application a standard tool for
science and engineering.

Conclusion

This application is combining software development with scientific research to create valuable
educational tools. An RTG Mission planner is just one potential example of this, but this could span
for many different things, and | see that they will only be more and more common in the future.

By simulation RTG performance, the user can learn about the crucial role of radioisotopes in space
exploration. With Continued development, this application could become an app that is used for
students, researchers and space mission planners.

This project is in honour of Marcus Oliphant and hopes to try and continue his legacy to inspire
future generations to continue the work that he started.

Screenshots

3
H
L]
(]

This is the very first version of my app, it was still missing necessary inputs and was only in the terminal. | was still using the concret,
brick and grass material options and temperature difference in Kelvin.

A is the side length of the cube!

K:

K is the material of your cube, for brick type B, for Concrete type C and for Glass type G
aT: I

AT is the tempurature difference in celcius between the hot and cold side of the wall!

: I

Your shape is hollow, L is how thick (in meters) the side of your shape is!

This is the first version of the GUI, works the same as the previous version except the temperature difference is now in celsius. The
output would not work in this version.

w - o X
File Edit Settings
Cube

A: I Load Resistance (): [

A is the side length of the cube!

Isotope:

Mass (g):
Time Elapsed (vears): NG

Thermoeletric Material:

This is a later version of the GUI, whilst the design stayed similar, there were many differences. First of all, the pyramid tab was removed
and the VXS Space Logo was added. The main part of the update was the new inputs which supported a more accurate output and
allowed potential for power output calculation.

G

VXS Space - RTG Power Output Calculator - by Jackson Burford = o x

File

quinderl Output Graphl Abnutl

Radius (R) [cm]: Instructions:

1. Enter the radius (R) [cm].
Height (H) [cm]: 2. Enter the height (H) [cm].
3. Enter the load resistance (Q).
Load Resistance (Q): 4. Select the isotope type.
5. Enter the mission duration in years. m
Isotope Type: + Pu-238 Sr-00 6. Select the thermoelectric material. | F & ¢ _S ace
pe lyp u g 7. Click Submit to calculate. L Fog oy
Mass (kg): 8. Click Export Results to save.
Mission Duration (years)"i
Thermoelectric Material: |Bismum Telluride (Bi2Te: .|
Submit ‘ Export Results |
= Power Output Heat Transfer Rate (Q) Power Output: 0

This is the newest design of the app, the cube and sphere tab was removed, it is now a light background instead of dark, and Mission
duration has been added as an input, radius and height are now in cm, isotope type are now radio buttons, 2 new tabs, no edit or
settings feature at the top, instructions and new output display. The main feature though is that it now shows power output.

7

VXS Space - RTG Power Output Calculator - by Jackson Burford

File

Cylinder] Output Graph] About]

Radius (R) [cm]: D Instructions:

1. Enter the radius (R) [cm].
Height (H) [cm]: 8 2. Enter the height (H) [cm].

3. Enter the load resistance (Q).
Load Resistance (Q): 5 4. Select the i_smppe type.

5. Enter the mission duration in years.
Isotope Type: s Pu-238 Sr-90 6. Select the thermoelectric material.

pe Typ “ ' 7. Click Submit to calculate.

Mass (kg): 2.00 8. Click Export Resulis to save.

Mission Duration (years):50

Thermoelectric Material: |Bismulh Telluride (Bi2Te:£

Submit ‘ Export Results |

* Power Output Heat Transfer Rate (Q) Power Qutput: 0.06

This is what the application looks like filled in (The Mass input has been removed since the screenshots have been taken because the

Mass is calculated by Radius, Height and material.) The power output can be viewed in the grey box at the bottom.

G

VXS Space - RTG Power Output Calculator - by Jackson Burford

File

C.ylinder] Output Graph] About]

Radius (R) [cm]: Cl Instructions:

1. Enter the radius (R) [em].
Height (H) [em]: 8 2. Enter the height (H) [cm].

3. Enter the load resistance (Q).
Load Resistance (Q): 5 4. Select the isotope type.

5. Enter the mission duration in years.
Isotope Type: « Pu-238 Sr-90 6. Select the thermoelectric material.

pe Typ Y r 7. Click Submit to calculate.

Mass (kg): 2.00 8. Click Export Results to save.

Mission Duration (years);|50

Thermoelectric Material: |Bi5muﬂ1 Telluride (Bi2Te:J

Submit | Export Results |

Power Output * Heat Transfer Rate (Q) Heat Transfer Rate (Q): 0.67

This is what it looks like with the output option set on Heat Transfer Rate.

8

» |
VXS Space - RTG Power Output Calculator - by Jackson Burford [=] x
File
Cylinder | [Output Graph| About |
Time Elapsed (years): 0.0
Power Output Over Time Output (Watts): 0
—— Power Qutput

0.055 -

0.050
W
B
=
=
=
=
5 0.045 4
(<]
P
o
=
5
[

0.040

0.035

T T T T T T
o 10 20 30 40 50
Time Elapsed (years)
= Power Output Heat Transfer Rate (Q) Power Output: 0.06

This is the output graph tab that shows the power output over time. You can see that the Y-Axis is the Power Output in watts while the
X-Axis is the Time-Elapsed in years.

| o
VXS Space - RTG Power Output Calculator - by Jackson Burford = a x
File
C.ylinder] Output Graph] Aboutw
Time Elapsed (years): [28 |
Power Output Over Time Gt ST
—— Power Output
0.055
0.050
o)
&
=
=]
=%
< 0.045
=]
&
=
S
&
0.040
0.035
o 10 20 30 40 50
Time Elapsed (years)
* Power Output Heat Transfer Rate (Q) Power Output: 0.06

Here is the graph with the time elapsed option, you input how far you are in the mission and it shows the power output at that time and
where on the graph you are.

10

Bibliography

https://www.youtube.com/watch?v=I-PujOuyCAg

https://www.youtube.com/watch?v=wkVwW{RUqqg4

https://science.nasa.gov/mission/cassini/radioisotope-thermoelectric-generator/

https://en.wikipedia.org/wiki/Radiocisotope thermoelectric generator

h n.Wiki ra/wiki/Plutonium-2

tors%20(RTGS),than%2Othe"/oZOaIternatlve"/020238P

https://dhss.delaware.gov/dhss/dph/files/strontiumfaq.pdf

https://www.sciencedirect.com/science/article/abs/pii/lS0378775322003172#:~:text=Bismuth%20tell
uride%2Dbased%20compounds%?20are.efficiency%20(3%E2%80%936%25).

https://pubs.rsc.org/en/content/articlelanding/2022/ee/d1ee03883d#:~:text=Fabricated%20single %
20and%20segmented%20thermoelectric,%25%20and%2012.2%25%2C%20respectively.

https://www.sciencedirect.com/science/article/abs/pii/S2542529324001421

https://www.sciencedirect.com/science/article/pii/S2214785320344217

NOTE: USED PYTHON TUTORIALS ON UDEMY FOR LEARNING PYTHON

11

https://www.youtube.com/watch?v=l-Puj0uyCAg
https://www.youtube.com/watch?v=wkVwWtRUqq4
https://science.nasa.gov/mission/cassini/radioisotope-thermoelectric-generator/
https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
https://science.nasa.gov/planetary-science/programs/radioisotope-power-systems/about-plutonium-238/
https://science.nasa.gov/planetary-science/programs/radioisotope-power-systems/about-plutonium-238/
https://en.wikipedia.org/wiki/Plutonium-238
https://world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/plutonium#:~:text=The%20decay%20heat%20of%20Pu,satellites%2C%20navigation%20beacons%2C%20etc
https://world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/plutonium#:~:text=The%20decay%20heat%20of%20Pu,satellites%2C%20navigation%20beacons%2C%20etc
https://www.ncbi.nlm.nih.gov/books/NBK599413/table/ch1.tab1/#:~:text=The%20half%2Dlife%20is%20the,plutonium%2D238%20is%2087.7%20years
https://www.ncbi.nlm.nih.gov/books/NBK599413/table/ch1.tab1/#:~:text=The%20half%2Dlife%20is%20the,plutonium%2D238%20is%2087.7%20years
https://en.wikipedia.org/wiki/Strontium-90#:~:text=Uses-,Radioisotope%20thermoelectric%20generators%20(RTGs),than%20the%20alternative%20238Pu
https://en.wikipedia.org/wiki/Strontium-90#:~:text=Uses-,Radioisotope%20thermoelectric%20generators%20(RTGs),than%20the%20alternative%20238Pu
https://dhss.delaware.gov/dhss/dph/files/strontiumfaq.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0378775322003172#:~:text=Bismuth%20telluride%2Dbased%20compounds%20are,efficiency%20(3%E2%80%936%25)
https://www.sciencedirect.com/science/article/abs/pii/S0378775322003172#:~:text=Bismuth%20telluride%2Dbased%20compounds%20are,efficiency%20(3%E2%80%936%25)
https://pubs.rsc.org/en/content/articlelanding/2022/ee/d1ee03883d#:~:text=Fabricated%20single%20and%20segmented%20thermoelectric,%25%20and%2012.2%25%2C%20respectively
https://pubs.rsc.org/en/content/articlelanding/2022/ee/d1ee03883d#:~:text=Fabricated%20single%20and%20segmented%20thermoelectric,%25%20and%2012.2%25%2C%20respectively
https://www.sciencedirect.com/science/article/abs/pii/S2542529324001421
https://www.sciencedirect.com/science/article/pii/S2214785320344217

APPENDIX
main.py:

from tkinter import Tk

from gui import create gui

main () :

window = Tk ()

window.title ("VXS Space - RTG Power Output Calculator - by Jackson
Burford")

window.geometry ("1200x800")

create gui (window)

window.mainloop ()

1]

if name == " main ":

main ()

plotting.py:

import matplotlib.pyplot as plt
from matplotlib.backends.backend tkagg import FigureCanvasTkAgg

embed plot to tk(parent, width=5, height=4, dpi=100) :

fig = plt.Figure (figsize=(width, height), dpi=dpi)

ax = fig.add subplot (111)

canvas = FigureCanvasTkAgg (fig, master=parent)

canvas.draw ()

canvas.get tk widget () .pack(side="top", fill="both", expand=

return ax

update plot (ax, time elapsed series, power output series,
highlight index=) g
ax.clear ()
ax.plot (time elapsed series, power output series, label='Power Output'

color="blue')

if highlight index
ax.plot (time elapsed series[highlight index],
power output series[highlight index], 'ro')
ax.set xlabel ("Time Elapsed (years)")
ax.set ylabel ("Power Output (Watts)")
ax.set title("Power Output Over Time")
ax.legend()

ax.figure.canvas.draw ()

"Pu-238": {"half life": 87.7, "thermal power per gram": 0.57},
"Sr-90": {"half life": 29.0, "thermal power per gram": 0.95},

thermoelectric data = {
"Bismuth Telluride (Bi2Te3)": {"efficiency": 0.03},
"Lead Telluride (PbTe)": {"efficiency": 0.093},
"Germanium Telluride (GeTe)": {"efficiency": 0.10},
"Skutterudite Alloys": {"efficiency": 0.12},
"Other": {1},

isotopes = ["Pu-238", "Sr-90"]

calculations.py:

import numpy as np

from data import isotope data, thermoelectric data

submitk (sizel, size2, load resistance, isotope type, mass,

thermoelectric material, time elapsed) :

volume = np.pi * (sizel / 100) ** 2 * (size2 / 100)

isotope = isotope datal[isotope typel]

half life = isotope["half life"]

thermal power per gram = isotope["thermal power per gram"]

remaining mass = mass * (0.5 ** (time elapsed / half life))

thermal power = remaining mass * thermal power per gram

efficiency = thermoelectric data.get (thermoelectric material,
{}) .get ("efficiency",)
if efficiency
raise ValueError (f"Efficiency for thermoelectric material

'{thermoelectric material}' is not defined.")

power output = thermal power * efficiency

heat transfer rate = thermal power * (1 - efficiency)

time elapsed series np.linspace (0, time elapsed, 100)

power output series power output * np.exp(-time elapsed series /
half life)

return time elapsed series, power output series, power output,

heat transfer rate

from tkinter import Frame, Label, Entry, Button, Menu, StringVar, ttk,
Radiobutton, DoubleVar, messagebox, TclError, PhotoImage

calculations import submitk

data import isotopes, thermoelectric data

plotting import embed plot to tk, update plot

about import create about tab

import math

LEFT,

isotope densities =
"Pu-238": 19.86,
"Sr-90": 2.8,

create gui (window) :
tabCylinder, tabGraph, notebook, output var, output label, entryr,
entryh, entry resistance2, isotope var2, entry time2, thermoelectric varz,
power output, heat transfer rate, time elapsed series, power output series,
dynamic time var
notebook = ttk.Notebook (window)

= ttk.Style()

.theme use('default')

.configure ('TNotebook.Tab', background="#d3d3d3")

.map ("TNotebook", background=[("selected", "#d3d3d3")])

tabCylinder = Frame (notebook, background="#ffffff")
tabGraph Frame (notebook, background="#ffffff")
tabAbout = Frame (notebook, background="#ffffff")

notebook.add (tabCylinder, text="Cylinder")
notebook.add (tabGraph, text="Output Graph")
notebook.add (tabAbout, text="About")
notebook.pack (expand= , fill="both")

menubar = Menu (window)

window.config (menu=menubar)

fileMenu = Menu (menubar, tearoff=0, font=("Arial", 10))
menubar.add cascade (label="File", menu=fileMenu)
fileMenu.add separator ()

fileMenu.add command (label="Exit", command=window.quit)

output frame = Frame (window, bg="#ffffff')

output frame.pack(side="top", fill="x")

output var = StringVar (window)

output var.set ("Power Output")

power output radio = Radiobutton (output frame, text="Power Output",
variable=output var, value="Power Output", font=("Arial", 12), bg="#ffffff',
fg='black', selectcolor='#d3d3d3', command=update output)

power output radio.pack(side="left", padx=10)

heat transfer radio = Radiobutton (output frame, text="Heat Transfer Rate
(Q)", variable=output var, value="Heat Transfer Rate (Q)", font=("Arial",
12), bg="#ffffff', fg='black', selectcolor='#d3d3d3', command=update output)

heat transfer radio.pack(side="left", padx=10)

output label = Label (output frame, text="Power Output: 0", font=("Arial",
12, 'bold'), width=30, height=1, background="#d3d3d3")
output label.pack(side="1left", padx=10)

create cylinder tab(tabCylinder)
create graph tab (tabGraph)
create about tab (tabAbout)

create cylinder tab(tab):

entryr, entryh, entry time2, entry mass2, entry resistance2,

isotope var2, thermoelectric var2

rlabel = Label (tab, text="Radius (R) [cm]:", font=('Arial', 12, 'bold'),
fg='black', bg="#ffffff'")

rlabel.place (x=10, y=10)

entryr = Entry(tab, font=("Arial", 12, 'bold'), fg="black", bg="#d3d3d3",
width=10)

entryr.place (x=200, y=10)

helabel = Label (tab, text="Height (H) [cm]:", font=('Arial', 12, 'bold'),
fg="black', bg="#ffffff'")

helabel.place (x=10, y=50)

entryh = Entry(tab, font=("Arial", 12, 'bold'), fg="black", bg="#d3d3d3",
width=10)

entryh.place (x=200, y=50)

load resistance label2 = Label (tab, text="Load Resistance (Q):",
font=('Arial', 12, 'bold'), fg='black',6 bg='#ffffff')

load resistance label2.place (x=10, y=90)

entry resistance2 = Entry(tab, font=("Arial", 12, 'bold'), fg="black",
bg="#d3d3d3", width=10)

entry resistance2.place (x=200, y=90)

isotope label2 = Label (tab, text="Isotope Type:", font=('Arial', 12,
'bold'), fg='black', bg="#ffffff')

isotope label2.place (x=10, y=130)

isotope var2 = StringVar (tab)

isotope var2.set (isotopes[0])

isotope radio3 = Radiobutton(tab, text="Pu-238", variable=isotope var2,
value="Pu-238", font=("Arial", 12), bg='#ffffff', fg='black',
selectcolor="#d3d3d3"'")

isotope radio3.place (x=200, y=130)

isotope radio4 = Radiobutton(tab, text="Sr-90", variable=isotope varz,

value="Sr-90", font=("Arial", 12), bg="#ffffff', fg='black',
selectcolor="#d3d3d3")
isotope radio4.place (x=300, y=130)

mass_ label2 = Label (tab, text="Mass (kg):", font=('Arial', 12, 'bold'),
fg="'black', bg="#ffffff')

mass_ label2.place (x=10, y=170)

entry mass2 = Label (tab, font=("Arial", 12, 'bold'), fg="black",
bg="#d3d3d3", width=10)

entry mass2.place (x=200, y=170)

time label2 = Label (tab, text="Mission Duration (years):", font=('Arial',
12, 'bold'), fg='black', bg="#ffffff')

time label2.place (x=10, y=210)

entry time2 = Entry(tab, font=("Arial", 12, 'bold'), fg="black",
bg="#d3d3d3", width=10)

entry time2.place (x=200, y=210)

thermoelectric label2 = Label (tab, text="Thermoelectric Material:",
font=("'Arial', 12, 'bold'), fg='black', bg="'#ffffff')
thermoelectric labelZ.place (x=10, y=250)

thermoelectric var2 = StringVar (tab)

thermoelectric dropdown2 = ttk.Combobox (tab,
textvariable=thermoelectric var2, values=list (thermocelectric data.keys()),
state="readonly", font=("Arial", 12))

thermoelectric dropdown2.place (x=200, y=250)

thermoelectric dropdown2.current (0)

submit button2 = Button (tab, text="Submit", font=("Arial", 12, 'bold'),
command=submit and plot cylinder, height=1, width=10, bg="#d3d3d3",
fg="black")

submit button2.place (x=150, y=290)

export button2 = Button (tab, text="Export Results", font=("Arial", 12,
'bold'"), command=export results, height=1, width=15, bg="#d3d3d3",
fg="black™")

export button2.place (x=300, y=290)

instructions?2 = Label (tab, text="Instructions:\nl. Enter the radius (R)
[cm] .\n2. Enter the height (H) [cm].\n3. Enter the load resistance (Q).\n4.
Select the isotope type.\n5. Enter the mission duration in years.\n6. Select
the thermoelectric material.\n7. Click Submit to calculate.\n8. Click Export
Results to save.", font=('Arial', 12), fg='black',6K bg="#ffffff',
Jjustify=LEFT)

instructions2.place (x=400, y=10)

logo _img = PhotoImage (file="logo.png")

logo label = Label (tab, image=logo img, bg="#ffffff')
logo label.image = logo_ img

logo label.place(relx=1.0, y=0, anchor="ne", x=-5)

create graph tab (tab):
ax graph, dynamic time var, dynamic output label
ax graph = embed plot to tk(tab, width=5.5, height=4)
dynamic time label = Label (tab, text="Time Elapsed (years):",
font=('Arial', 9, 'bold'), fg='black', bg="#ffffff')

dynamic time label.place (x=900, y=20)

dynamic time var = DoubleVar ()

dynamic_time entry = Entry(tab, textvariable=dynamic time var,
font=("Arial", 9, 'bold'), fg="black", bg="#d3d3d3", width=10)

dynamic time entry.place (x=1050, y=20)

dynamic time var.trace add('write', *args: update dynamic point ())

dynamic output label = Label (tab, text="Output (Watts): 0",
font=('Arial', 9, 'bold'), fg='black', bg="#ffffff')
dynamic output label.place (x=900, y=60)

submit and plot cylinder():
power output, heat transfer rate, time elapsed series,
power output series
if validate inputs cylinder() :

return

radius float (entryr.get())

height float (entryh.get ())

load resistance = float (entry resistanceZ.get())
isotope type isotope var2.get ()

time elapsed = float (entry timeZ.get())

thermoelectric material = thermoelectric varZ.get ()

volume = math.pi * radius**2 * height
density = isotope densities[isotope type]
mass = volume * density

mass_kg = mass / 1000

AL

entry mass2.config (text= mass_kg
try:
time elapsed series, power output series, power output,
heat transfer rate = submitk(radius, height, load resistance, isotope type,
mass kg, thermoelectric material, time elapsed)
except ValueError as e:

messagebox.showerror ("Error", str(e))

return

notebook.select (tabGraph)

update output ()

update plot (ax graph, time elapsed series, power output series)

validate inputs cylinder () :
if entryr.get () entryh.get () entry resistance2.get ()
entry time2.get():
messagebox.showwarning ("Input Error", "Please fill in all required
fields.")
return

return

update output () :

selected output = output var.get ()

if selected output == "Power Output":
output value = power output

zlses

output value heat transfer rate

output label.config(text=f"{selected output}: {output value

update output graph() :
selected output = output var.get ()

update plot (ax graph, time elapsed series, power output series)

update dynamic point () :
time elapsed series, power output series, dynamic output label
try:
time elapsed = dynamic time var.get ()
except TclError:
dynamic output label.config(text="Output (Watts): N/A")

return

if 0 <= time elapsed <= max(time elapsed series):
index = int (time elapsed / max(time elapsed series) *
(len (time elapsed series) 1))
dynamic output = power output series[index]

dynamic output label.config(text=f"Output (Watts):

dynamic_output ")
update plot (ax graph, time elapsed series, power output series,

highlight index=index)
else:
dynamic output label.config(text="Output (Watts): N/A")

export results() :

from utils import get simulation results, export to csv

data = get simulation results()

export to csv(data)

OLD ORIGINAL CODE:

tkinter import *
tkinter import ttk
math import pi
math import *

import math

thermoelectric data =
"Bismuth Telluride (Bi2Te3)": {"efficiency":

"Lead Telluride (PbTe)": {"efficiency": 0.07},
"Germanium Telluride (GeTe)": {"efficiency": 0.05},
"Skutterudite Alloys": {"efficiency": 0.12},
"Other": {},

isotope data = {

"Pu-238": {"decay constant": 0.018, "energy per decay": 5.59%e-12},

"Sr-90": {"decay constant": 0.0281, "energy per decay": 2.83e-11},

program start time = time.time ()

submitk () :
K
eta th
alpha
DeltaT
400

isotope type = isotope var.get ()

selected material = thermoelectric var.get ()

eta th float (thermoelectric data[selected material] ["efficiency"])

thermo {

"Bismuth Telluride (Bi2Te3)": {"efficiency": 0.08},

"Lead Telluride (PbTe)": {"efficiency": 0.07},
"Germanium Telluride (GeTe)": {"efficiency": 0.05},
"Skutterudite Alloys": {"efficiency": 0.12},
"Other": {},

}

alpha = thermoelectric data[selected material] [

"efficiency"] * le-3

try:
time elapsed = float (entry time.get())

if time elapsed <= 0:
raise ValueError ("Time elapsed must be a positive number")
except ValueError as e:

print ("Error:", e)

return
try:

mass = float (entry mass.get())

if mass <= 0:

raise ValueError ("Mass must be a positive number")

except ValueError as e:

print ("Error:", e)

return

try:

load resistance = float (entry resistance.get())

if load resistance <= O0:

raise ValueError ("Load resistance must be a positive number")

except ValueError as e:

print ("Error:", e)

(T ¢ / (T_h + 273.15))

effective efficiency = eta C * eta th

decay constant = isotope data[isotope type] ["decay constant"]

energy per decay = isotope data[isotope type] ["energy per decay"]

decay factor = math.exp(-decay constant * time elapsed)

heat decay watts = mass * decay constant * energy per decay *

decay factor

ta ht = 0.8

heat decay rate = heat decay watts * ta ht

deltaT = 873

int (entrya.get ())

o* (a*a)

a/?2

-K * A * deltaT / L + heat decay watts

heat transfer rate = Q

delta t float (deltaT)

eta th * delta t

power output = voltage ** 2 / load resistance

print (power output)

submitcy () :
Kcy
Kcy = 400

isotope type = isotope var.get()

try:
time elapsed = float (entry time2.get())

if time elapsed <= 0:
raise ValueError ("Time elapsed must be a positive number")
except ValueError as e:

print ("Error:", e)

return

try:

mass = float (entry mass2.get())
if mass <= 0:
raise ValueError ("Mass must be a positive number")

except ValueError as e:

print ("Error:", e)

return

decay constant = isotope data[isotope type] ["decay constant"]

energy per decay = isotope data[isotope type] ["energy per decay"]

decay factor = math.exp(-decay constant * time elapsed)

heat decay watts = mass * decay constant * energy per decay *

decay factor

deltaTcy = 873

radius = int (entryr.get())

int (entryh.get ())
sacy = (2*pi* (radius*radius)) + (2*pi*radius*h)
Lcy radius/?2
Qcy -Kcy * sacy * deltaTcy / Lcy + heat decay watts
print (Qcy)
ANSlabelcy.config (text=Qcy)
submits () :
Ks

400
deltaTs = 873

isotope type = isotope var.get ()

try:
time elapsed = float (entry time3.get())

if time elapsed <= O0:
raise ValueError ("Time elapsed must be a positive number")
except ValueError as e:

print ("Error:", e)

return

try:

mass = float (entry mass3.get())
if mass <= 0:
raise ValueError ("Mass must be a positive number")

except ValueError as e:

print ("Error:", e)

decay constant = isotope data[isotope type] ["decay constant"]

energy per decay = isotope data[isotope type] ["energy per decay"]

decay factor = math.exp(-decay constant * time elapsed)

heat decay watts = mass * decay constant * energy per decay *

decay factor

= int (entryra.get())

4*pi* (r*r)

r/2

Qra -Ks * sra * deltaTs / Lra + heat decay watts

print (Qra)

ANSlabels.config (text=Qra)

window = Tk ()

window.geometry ("1250x575"™)
window.config (background="#404040")

notebook = ttk.Notebook (window)

= ttk.Style()

.theme use ('default')

.configure ('TNotebook.Tab', background="#404040")

.map ("TNotebook", background= [("selected", "#404040")])

tabCube = Frame (notebook, background="#262626")
tabCylinder = Frame (notebook,background="#262626")
tabSphere = Frame (notebook, background="#262626")

.add (tabCube, text="Cube")

.add (tabCylinder, text="Cylinder")

.add (tabSphere, text="Sphere")

.pack (expand= , £ill="both")
menubar = Menu (window)

window.config (menu=menubar)

fileMenu = Menu (menubar, tearoff=0, font=("Arial", 10))

menubar.add cascade (label="File", menu=fileMenu

fileMenu.add separator ()

fileMenu.add command (label="Exit", command=quit)

editMenu = Menu (menubar, tearoff=0, font=("Arial", 10))

menubar.add cascade (label="Edit", menu=editMenu)

settingsMenu = Menu (menubar, tearoff=0, font=("Arial", 10))

menubar.add cascade (label="Settings", menu=settingsMenu)

photoimage = PhotoImage (file='../RTG GUI/GUI/VXS-Space-Logo-For-GUI.png')

ANSlabel = Label (tabCube, font=("Arial", 50, 'bold'), width=30, height=1,
background="#AFABAB")
ANSlabel.place (x=7, y=15)

VXS = Label (tabCube,
text="Hello",
fg="4#262626",

bg="#262626",
image=photoimage)

VXS .place (x=10, y=425)

alabel = Label (tabCube,
text="A: ",
font=('Arial', 20, 'bold'),
fg="'white',
bg="#262626",)

alabel.place(x=10,y=115)

Alabel = Label (tabCube, font=("Arial", 20,
length of the cube!", width=25, height=1,
Alabel.place (x=5, y=160)

entrya= Entry (tabCube,
font=("Arial", 20, 'bold'),
fg="black",

bg="#AFABAB")

entrya.place (x=50, y=115)

'bold'),

text="A is the side

bg="#262626", fg="White")

ANSlabelcy = Label (tabCylinder, font=("Arial", 50,
height=1, background="#AFABAB")
ANSlabelcy.place(x=7, y=15)

VXScy = Label (tabCylinder,
text="Hello",
fg="#262626",
bg="#262626",
image=photoimage)

VXScy.place (x=10, y=425)

= Label (tabCylinder,
text="R: ",
font=("'Arial', 20, 'bold'"),
fg="'white',
bg="#262626",)

.place (x=10,y=115)

'bold'), width=30,

= Label (tabCylinder, font=("Arial", 20, 'bold'), text="R is the
of the cylinder", width=25, height=1, bg="#262626", fg="White")

.place (x=-5, y=160)

entryr= Entry(tabCylinder,
font=("Arial", 20, 'bold'"),
fg="black",

bg="#AFABAB")

entryr.place (x=50, y=115)

helabel = Label (tabCylinder,
text="H: ",
font=('Arial', 20, 'bold'"),
fg='white',
bg="#262626",)

helabel.place (x=10,y=205)

hlabel = Label (tabCylinder, font=("Arial", 20, 'bold'), text="H is the
height of the Cylinder", width=25, height=1, bg="#262626", fg="White")
hlabel.place (x=-5, y=250)

entryh= Entry(tabCylinder,
font=("Arial", 20, 'bold'"),
fg="black",
bg="#AFABAB")

entryh.place (x=50, y=205)

sumbitCY button = Button(tabCylinder, text="Submit", font=("Arial", 10,
'bold'), command=submitcy, height=1, width=10, bg="#AFABAB", fg="Black")
sumbitCY button.place (x=500, y=505)

ANSlabels = Label (tabSphere,
background="#AFABAB")
ANSlabels.place (x=7, y=15)

VXS = Label (tabSphere,
text="Hello",
fg="#262626",
bg="#262626",

font=("Arial", 50, 'bold'), width=30, height=1,

image=photoimage)

VXS.place (x=10, y=425)

= Label (tabSphere,
text="R: ",
font=('Arial',
fg="'white',
bg="#262626",)

.place(x=10,y=115)

20,

= Label (tabSphere, font=("Arial", 20, 'bold'), text="R is the radius
height=1, bg="#262626",

sphere!", width=25,
.place(x=-5, y=160)

entryra= Entry (tabSphere,
font=("Arial",
fg="black",
bg="#AFABAB")

20,

'bold'"),

fg="White")

entryra.place (x=50, y=115)

sumbits button = Button (tabSphere, text="Submit", font=("Arial", 10,
'bold'), command=submits, height=1, width=10, bg="#AFABAB", fg="Black")
sumbits button.place (x=500, y=505)

isotopes = ["Pu-238", "Sr-90"]
sumbitQ button = Button (tabCube, text="Submit", font=("Arial", 10,

command=submitk, height=1, width=10, bg="#AFABAB", fg="Black")
sumbitQ button.place (x=500, y=505)

isotope var = StringVar (window)

isotope var.set (isotopes[0])

isotope dropdown = ttk.Combobox (tabCube, textvariable=isotope var,
values=isotopes)

isotope dropdown.place (x=125, y=270)

isotope label = Label (tabCube, text="Isotope:", font=('Arial',6 20,
fg="white', bg="'#262626")
isotope label.place(x=10, y=260)

entry mass = Entry(tabCube, font=("Arial", 20, 'bold'), fg="black",
bg="#AFABAB", state="normal")
entry mass.place (x=135, y=310)

mass label = Label (tabCube, text="Mass (g):", font=('Arial', 20, 'bold'"),
fg='white', bg='#262626")
mass label.place (x=10, y=310)

entry time = Entry(tabCube, font=("Arial", 20, 'bold'), fg="black",
bg="#AFABAB", validate="key")
entry time.place (x=300, y=360)

time label = Label (tabCube, text="Time Elapsed (years):", font=('Arial', 20,
'bold'), fg='white', bg='#262626")
time label.place(x=10, y=360)

isotope dropdown2 = ttk.Combobox (tabCylinder, textvariable=isotope var,

values=isotopes)

isotope dropdown2.place (x=125, y=310)

isotope label2 = Label (tabCylinder, text="Isotope:", font=('Arial', 20,
fg="white', bg='#262626")
isotope label2.place (x=10, y=300)

entry mass2 = Entry(tabCylinder, font=("Arial", 20, 'bold'), fg="black",

bg="#AFABAB", state="normal")
entry mass2.place (x=135, y=350)

mass label2 = Label (tabCylinder, text="Mass (g):", font=('Arial', 20,
'bold'), fg='white', bg='#262626")
mass label2.place (x=10, y=350)

entry time2 = Entry(tabCylinder, font=("Arial", 20, 'bold'), fg="black",

bg="#AFABAB", validate="key")
entry time2.place (x=300, y=395)

time label2 = Label (tabCylinder, text="Time Elapsed (years):",
font=('Arial', 20, 'bold'), fg='white', bg='#262626")
time label2.place (x=10, y=395)

isotope dropdown3 = ttk.Combobox (tabSphere, textvariable=isotope var,
values=isotopes)

isotope dropdown3.place (x=50, y=260)

isotope label3 = Label (tabSphere, text="Isotope:", font=('Arial', 20,
'bold'), fg='white', bg='#262626")
isotope label3.place (x=10, y=260)

entry mass3 = Entry(tabSphere, font=("Arial", 20, 'bold'), fg="black",
bg="#AFABAB", state="normal")

entry mass3.place (x=135, y=310)

mass label3 = Label (tabSphere, text="Mass (g):", font=('Arial', 20, 'bold'"),

fg='white', bg='#262626")
mass label3.place (x=10, y=310)

entry time3 = Entry(tabSphere, font=("Arial", 20, 'bold'), fg="black",
bg="#AFABAB", validate="key")
entry time3.place (x=300, y=360)

time label3 = Label (tabSphere, text="Time Elapsed (years):", font=('Arial',

20, 'bold'), fg='white', bg='#262626")
time label3.place (x=10, y=360)

thermoelectric var = StringVar ()

thermoelectric dropdown = ttk.Combobox (tabCube,

textvariable=thermoelectric var, state="readonly")

thermoelectric dropdown["values"] = list (thermoelectric data.keys())
thermoelectric dropdown.pack (padx=10, pady=10)

thermoelectric dropdown.current (0)

thermoelectric dropdown.place (x=350, y=422)

thermoeletriclLabel = Label (tabCube, text="Thermoeletric Material:",
font=('Arial', 20, 'bold'), fg='white', bg='#262626")
thermoeletricLabel.place(x=10, y=410)

load resistance label = Label (tabCube, text="Load Resistance (Q):",
font=('Arial', 20, 'bold'), fg='white', bg='#262626")
load resistance label.place (x=650, y=115)

entry resistance = Entry(tabCube, font=("Arial", 20, 'bold"'), fg="black"
bg="#AFABAB")

entry resistance.place (x=930, y=115)

class RTGCalculator:
def init (self, initial power, decay constant, load resistance):
Initialize RTG calculator with input parameters
self.initial power = initial power
self.decay constant = decay constant

self.load resistance = load resistance
def calculate power output (self): # Calculate voltage using
Seebeck coefficient (o) and AT
0.200e-3 # Example Seebeck coefficient (adjust based on your
delta T 873 # Example temperature difference (in kelvin)

voltage alpha * delta T

Power output using Joule's Law

power output = (voltage ** 2) / self.load resistance
return power output
def test rtg calculator():

Sample input parameters

initial power = 100 # Example initial power (in Watts)

decay constant = 0.018 # Example decay constant

load resistance = 10 # Example load resistance (in Ohms)

Create an instance of RTGCalculator
rtg calculator = RTGCalculator (initial power, decay constant,

ocoad resistance)

Test the calculate power output method

power output = rtg calculator.calculate power output ()

H H H= H O FH H= H

print ("Power Output:", power output)

window.mainloop ()

40

